INFLUENCE OF THE VONGFONG 2014 HURRICANE ON THE IONOSPHERE AND GEOMAGNETIC FIELD AS DETECTED BY SWARM SATELLITES: 2. GEOMAGNETIC DISTURBANCES

V. Martines-Bedenko, V. Pilipenko, V. I. Zakharov, V. Grushin
{"title":"INFLUENCE OF THE VONGFONG 2014 HURRICANE ON THE IONOSPHERE AND GEOMAGNETIC FIELD AS DETECTED BY SWARM SATELLITES: 2. GEOMAGNETIC DISTURBANCES","authors":"V. Martines-Bedenko, V. Pilipenko, V. I. Zakharov, V. Grushin","doi":"10.12737/stp-54201910","DOIUrl":null,"url":null,"abstract":"Strong meteorological disturbances in the atmosphere, accompanied by the generation of waves and turbulence, can affect ionospheric plasma and geomagnetic field. To search for these effects, we have analyzed electromagnetic measurement data from low-orbit Swarm satellites during flights over the typhoon Vongfong 2014. We have found that there are “magnetic ripples” in the upper ionosphere that are transverse to the main geomagnetic field fluctuations of small amplitude (0.5–1.5 nT) with a predominant period of about 10 s caused by small-scale longitudinal currents. Presumably, these quasiperiodic fluctuations are produced by the satellite’s passage through the quasiperiodic ionospheric structure with a characteristic scale of ~70 km induced by the interaction of acoustic waves excited by the typhoon with the E-layer of the ionosphere. In one of the flights over the typhoon, a burst of high-frequency noise (~0.3 Hz) was observed, which can be associated with the excitation of the ionospheric Alfven resonator by atmospheric turbulence.","PeriodicalId":351867,"journal":{"name":"Solnechno-Zemnaya Fizika","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solnechno-Zemnaya Fizika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12737/stp-54201910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Strong meteorological disturbances in the atmosphere, accompanied by the generation of waves and turbulence, can affect ionospheric plasma and geomagnetic field. To search for these effects, we have analyzed electromagnetic measurement data from low-orbit Swarm satellites during flights over the typhoon Vongfong 2014. We have found that there are “magnetic ripples” in the upper ionosphere that are transverse to the main geomagnetic field fluctuations of small amplitude (0.5–1.5 nT) with a predominant period of about 10 s caused by small-scale longitudinal currents. Presumably, these quasiperiodic fluctuations are produced by the satellite’s passage through the quasiperiodic ionospheric structure with a characteristic scale of ~70 km induced by the interaction of acoustic waves excited by the typhoon with the E-layer of the ionosphere. In one of the flights over the typhoon, a burst of high-frequency noise (~0.3 Hz) was observed, which can be associated with the excitation of the ionospheric Alfven resonator by atmospheric turbulence.
2014年暴风飓风对群卫星探测电离层和地磁场的影响;地磁扰动
大气中强烈的气象扰动,伴随着波浪和湍流的产生,可以影响电离层等离子体和地磁场。为了寻找这些影响,我们分析了低轨道Swarm卫星在台风“黄蜂2014”上空飞行时的电磁测量数据。我们发现在电离层上部存在“磁波纹”,这些磁波纹是横向于主磁场波动的小振幅(0.5-1.5 nT),主要周期约为10s,由小尺度的纵向电流引起。推测这些准周期波动是由台风激发的声波与电离层e层相互作用引起的卫星穿过特征尺度为~70 km的准周期电离层结构而产生的。在台风上空的一次飞行中,观测到高频噪声(~0.3 Hz)的爆发,这可能与大气湍流对电离层阿尔芬谐振器的激发有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信