David Bonet, May Levin, Daniel Mas Montserrat, Alexander G Ioannidis
{"title":"Machine Learning Strategies for Improved Phenotype Prediction in Underrepresented Populations.","authors":"David Bonet, May Levin, Daniel Mas Montserrat, Alexander G Ioannidis","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Precision medicine models often perform better for populations of European ancestry due to the over-representation of this group in the genomic datasets and large-scale biobanks from which the models are constructed. As a result, prediction models may misrepresent or provide less accurate treatment recommendations for underrepresented populations, contributing to health disparities. This study introduces an adaptable machine learning toolkit that integrates multiple existing methodologies and novel techniques to enhance the prediction accuracy for underrepresented populations in genomic datasets. By leveraging machine learning techniques, including gradient boosting and automated methods, coupled with novel population-conditional re-sampling techniques, our method significantly improves the phenotypic prediction from single nucleotide polymorphism (SNP) data for diverse populations. We evaluate our approach using the UK Biobank, which is composed primarily of British individuals with European ancestry, and a minority representation of groups with Asian and African ancestry. Performance metrics demonstrate substantial improvements in phenotype prediction for underrepresented groups, achieving prediction accuracy comparable to that of the majority group. This approach represents a significant step towards improving prediction accuracy amidst current dataset diversity challenges. By integrating a tailored pipeline, our approach fosters more equitable validity and utility of statistical genetics methods, paving the way for more inclusive models and outcomes.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"404-418"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10799683/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139075189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eric Wu, Zhenqin Wu, Aaron T Mayer, Alexandro E Trevino, James Zou
{"title":"PEPSI: Polarity measurements from spatial proteomics imaging suggest immune cell engagement.","authors":"Eric Wu, Zhenqin Wu, Aaron T Mayer, Alexandro E Trevino, James Zou","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Subcellular protein localization is important for understanding functional states of cells, but measuring and quantifying this information can be difficult and typically requires high-resolution microscopy. In this work, we develop a metric to define surface protein polarity from immunofluorescence (IF) imaging data and use it to identify distinct immune cell states within tumor microenvironments. We apply this metric to characterize over two million cells across 600 patient samples and find that cells identified as having polar expression exhibit characteristics relating to tumor-immune cell engagement. Additionally, we show that incorporating these polarity-defined cell subtypes improves the performance of deep learning models trained to predict patient survival outcomes. This method provides a first look at using subcellular protein expression patterns to phenotype immune cell functional states with applications to precision medicine.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"492-505"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139075194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zarif L Azher, Michael Fatemi, Yunrui Lu, Gokul Srinivasan, Alos B Diallo, Brock C Christensen, Lucas A Salas, Fred W Kolling, Laurent Perreard, Scott M Palisoul, Louis J Vaickus, Joshua J Levy
{"title":"Spatial Omics Driven Crossmodal Pretraining Applied to Graph-based Deep Learning for Cancer Pathology Analysis.","authors":"Zarif L Azher, Michael Fatemi, Yunrui Lu, Gokul Srinivasan, Alos B Diallo, Brock C Christensen, Lucas A Salas, Fred W Kolling, Laurent Perreard, Scott M Palisoul, Louis J Vaickus, Joshua J Levy","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Graph-based deep learning has shown great promise in cancer histopathology image analysis by contextualizing complex morphology and structure across whole slide images to make high quality downstream outcome predictions (ex: prognostication). These methods rely on informative representations (i.e., embeddings) of image patches comprising larger slides, which are used as node attributes in slide graphs. Spatial omics data, including spatial transcriptomics, is a novel paradigm offering a wealth of detailed information. Pairing this data with corresponding histological imaging localized at 50-micron resolution, may facilitate the development of algorithms which better appreciate the morphological and molecular underpinnings of carcinogenesis. Here, we explore the utility of leveraging spatial transcriptomics data with a contrastive crossmodal pretraining mechanism to generate deep learning models that can extract molecular and histological information for graph-based learning tasks. Performance on cancer staging, lymph node metastasis prediction, survival prediction, and tissue clustering analyses indicate that the proposed methods bring improvement to graph based deep learning models for histopathological slides compared to leveraging histological information from existing schemes, demonstrating the promise of mining spatial omics data to enhance deep learning for pathology workflows.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"464-476"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10783797/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139075219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hannah M Seagle, Jacklyn N Hellwege, Brian S Mautz, Chun Li, Yaomin Xu, Siwei Zhang, Dan M Roden, Tracy L McGregor, Digna R Velez Edwards, Todd L Edwards
{"title":"Evidence of recent and ongoing admixture in the U.S. and influences on health and disparities.","authors":"Hannah M Seagle, Jacklyn N Hellwege, Brian S Mautz, Chun Li, Yaomin Xu, Siwei Zhang, Dan M Roden, Tracy L McGregor, Digna R Velez Edwards, Todd L Edwards","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Many researchers in genetics and social science incorporate information about race in their work. However, migrations (historical and forced) and social mobility have brought formerly separated populations of humans together, creating younger generations of individuals who have more complex and diverse ancestry and race profiles than older age groups. Here, we sought to better understand how temporal changes in genetic admixture influence levels of heterozygosity and impact health outcomes. We evaluated variation in genetic ancestry over 100 birth years in a cohort of 35,842 individuals with electronic health record (EHR) information in the Southeastern United States. Using the software STRUCTURE, we analyzed 2,678 ancestrally informative markers relative to three ancestral clusters (African, East Asian, and European) and observed rising levels of admixture for all clinically-defined race groups since 1990. Most race groups also exhibited increases in heterozygosity and long-range linkage disequilibrium over time, further supporting the finding of increasing admixture in young individuals in our cohort. These data are consistent with United States Census information from broader geographic areas and highlight the changing demography of the population. This increased diversity challenges classic approaches to studies of genotype-phenotype relationships which motivated us to explore the relationship between heterozygosity and disease diagnosis. Using a phenome-wide association study approach, we explored the relationship between admixture and disease risk and found that increased admixture resulted in protective associations with female reproductive disorders and increased risk for diseases with links to autoimmune dysfunction. These data suggest that tendencies in the United States population are increasing ancestral complexity over time. Further, these observations imply that, because both prevalence and severity of many diseases vary by race groups, complexity of ancestral origins influences health and disparities.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"374-388"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139075246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shunian Xiang, Patrick J Lawrence, Bo Peng, ChienWei Chiang, Dokyoon Kim, Li Shen, Xia Ning
{"title":"Modeling Path Importance for Effective Alzheimer's Disease Drug Repurposing.","authors":"Shunian Xiang, Patrick J Lawrence, Bo Peng, ChienWei Chiang, Dokyoon Kim, Li Shen, Xia Ning","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Recently, drug repurposing has emerged as an effective and resource-efficient paradigm for AD drug discovery. Among various methods for drug repurposing, network-based methods have shown promising results as they are capable of leveraging complex networks that integrate multiple interaction types, such as protein-protein interactions, to more effectively identify candidate drugs. However, existing approaches typically assume paths of the same length in the network have equal importance in identifying the therapeutic effect of drugs. Other domains have found that same length paths do not necessarily have the same importance. Thus, relying on this assumption may be deleterious to drug repurposing attempts. In this work, we propose MPI (Modeling Path Importance), a novel network-based method for AD drug repurposing. MPI is unique in that it prioritizes important paths via learned node embeddings, which can effectively capture a network's rich structural information. Thus, leveraging learned embeddings allows MPI to effectively differentiate the importance among paths. We evaluate MPI against a commonly used baseline method that identifies anti-AD drug candidates primarily based on the shortest paths between drugs and AD in the network. We observe that among the top-50 ranked drugs, MPI prioritizes 20.0% more drugs with anti-AD evidence compared to the baseline. Finally, Cox proportional-hazard models produced from insurance claims data aid us in identifying the use of etodolac, nicotine, and BBB-crossing ACE-INHs as having a reduced risk of AD, suggesting such drugs may be viable candidates for repurposing and should be explored further in future studies.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"306-321"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11056095/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139075191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brooke Rhead, Paige E Haffener, Yannick Pouliot, Francisco M De La Vega
{"title":"Imputation of race and ethnicity categories using genetic ancestry from real-world genomic testing data.","authors":"Brooke Rhead, Paige E Haffener, Yannick Pouliot, Francisco M De La Vega","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The incompleteness of race and ethnicity information in real-world data (RWD) hampers its utility in promoting healthcare equity. This study introduces two methods-one heuristic and the other machine learning-based-to impute race and ethnicity from genetic ancestry using tumor profiling data. Analyzing de-identified data from over 100,000 cancer patients sequenced with the Tempus xT panel, we demonstrate that both methods outperform existing geolocation and surname-based methods, with the machine learning approach achieving high recall (range: 0.859-0.993) and precision (range: 0.932-0.981) across four mutually exclusive race and ethnicity categories. This work presents a novel pathway to enhance RWD utility in studying racial disparities in healthcare.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"433-445"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139075172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sajjad Fouladvand, Emma Pierson, Ivana Jankovic, David Ouyang, Jonathan H Chen, Roxana Daneshjou
{"title":"Session Introduction: Artificial Intelligence in Clinical Medicine: Generative and Interactive Systems at the Human-Machine Interface.","authors":"Sajjad Fouladvand, Emma Pierson, Ivana Jankovic, David Ouyang, Jonathan H Chen, Roxana Daneshjou","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Artificial Intelligence (AI) models are substantially enhancing the capability to analyze complex and multi-dimensional datasets. Generative AI and deep learning models have demonstrated significant advancements in extracting knowledge from unstructured text, imaging as well as structured and tabular data. This recent breakthrough in AI has inspired research in medicine, leading to the development of numerous tools for creating clinical decision support systems, monitoring tools, image interpretation, and triaging capabilities. Nevertheless, comprehensive research is imperative to evaluate the potential impact and implications of AI systems in healthcare. At the 2024 Pacific Symposium on Biocomputing (PSB) session entitled \"Artificial Intelligence in Clinical Medicine: Generative and Interactive Systems at the Human-Machine Interface\", we spotlight research that develops and applies AI algorithms to solve real-world problems in healthcare.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139075202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yisu Yang, Aditi Sathe, Kurt Schilling, Niranjana Shashikumar, Elizabeth Moore, Logan Dumitrescu, Kimberly R Pechman, Bennett A Landman, Katherine A Gifford, Timothy J Hohman, Angela L Jefferson, Derek B Archer
{"title":"A deep neural network estimation of brain age is sensitive to cognitive impairment and decline.","authors":"Yisu Yang, Aditi Sathe, Kurt Schilling, Niranjana Shashikumar, Elizabeth Moore, Logan Dumitrescu, Kimberly R Pechman, Bennett A Landman, Katherine A Gifford, Timothy J Hohman, Angela L Jefferson, Derek B Archer","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The greatest known risk factor for Alzheimer's disease (AD) is age. While both normal aging and AD pathology involve structural changes in the brain, their trajectories of atrophy are not the same. Recent developments in artificial intelligence have encouraged studies to leverage neuroimaging-derived measures and deep learning approaches to predict brain age, which has shown promise as a sensitive biomarker in diagnosing and monitoring AD. However, prior efforts primarily involved structural magnetic resonance imaging and conventional diffusion MRI (dMRI) metrics without accounting for partial volume effects. To address this issue, we post-processed our dMRI scans with an advanced free-water (FW) correction technique to compute distinct FW-corrected fractional anisotropy (FAFWcorr) and FW maps that allow for the separation of tissue from fluid in a scan. We built 3 densely connected neural networks from FW-corrected dMRI, T1-weighted MRI, and combined FW+T1 features, respectively, to predict brain age. We then investigated the relationship of actual age and predicted brain ages with cognition. We found that all models accurately predicted actual age in cognitively unimpaired (CU) controls (FW: r=0.66, p=1.62x10-32; T1: r=0.61, p=1.45x10-26, FW+T1: r=0.77, p=6.48x10-50) and distinguished between CU and mild cognitive impairment participants (FW: p=0.006; T1: p=0.048; FW+T1: p=0.003), with FW+T1-derived age showing best performance. Additionally, all predicted brain age models were significantly associated with cross-sectional cognition (memory, FW: β=-1.094, p=6.32x10-7; T1: β=-1.331, p=6.52x10-7; FW+T1: β=-1.476, p=2.53x10-10; executive function, FW: β=-1.276, p=1.46x10-9; T1: β=-1.337, p=2.52x10-7; FW+T1: β=-1.850, p=3.85x10-17) and longitudinal cognition (memory, FW: β=-0.091, p=4.62x10-11; T1: β=-0.097, p=1.40x10-8; FW+T1: β=-0.101, p=1.35x10-11; executive function, FW: β=-0.125, p=1.20x10-10; T1: β=-0.163, p=4.25x10-12; FW+T1: β=-0.158, p=1.65x10-14). Our findings provide evidence that both T1-weighted MRI and dMRI measures improve brain age prediction and support predicted brain age as a sensitive biomarker of cognition and cognitive decline.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"148-162"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10764074/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139075236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rachel A Hoffing, Aimee M Deaton, Aaron M Holleman, Lynne Krohn, Philip J LoGerfo, Mollie E Plekan, Sebastian Akle Serrano, Paul Nioi, Lucas D Ward
{"title":"Transcript-aware analysis of rare predicted loss-of-function variants in the UK Biobank elucidate new isoform-trait associations.","authors":"Rachel A Hoffing, Aimee M Deaton, Aaron M Holleman, Lynne Krohn, Philip J LoGerfo, Mollie E Plekan, Sebastian Akle Serrano, Paul Nioi, Lucas D Ward","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>A single gene can produce multiple transcripts with distinct molecular functions. Rare-variant association tests often aggregate all coding variants across individual genes, without accounting for the variants' presence or consequence in resulting transcript isoforms. To evaluate the utility of transcript-aware variant sets, rare predicted loss-of-function (pLOF) variants were aggregated for 17,035 protein-coding genes using 55,558 distinct transcript-specific variant sets. These sets were tested for their association with 728 circulating proteins and 188 quantitative phenotypes across 406,921 individuals in the UK Biobank. The transcript-specific approach resulted in larger estimated effects of pLOF variants decreasing serum cis-protein levels compared to the gene-based approach (pbinom ≤ 2x10-16). Additionally, 251 quantitative trait associations were identified as being significant using the transcript-specific approach but not the gene-based approach, including PCSK5 transcript ENST00000376752 and standing height (transcript-specific statistic, P = 1.3x10-16, effect = 0.7 SD decrease; gene-based statistic, P = 0.02, effect = 0.05 SD decrease) and LDLR transcript ENST00000252444 and apolipoprotein B (transcript-specific statistic, P = 5.7x10-20, effect = 1.0 SD increase; gene-based statistic, P = 3.0x10-4, effect = 0.2 SD increase). This approach demonstrates the importance of considering the effect of pLOFs on specific transcript isoforms when performing rare-variant association studies.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"247-260"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139075254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jason H Moore, Xi Li, Jui-Hsuan Chang, Nicholas P Tatonetti, Dan Theodorescu, Yong Chen, Folkert W Asselbergs, Mythreye Venkatesan, Zhiping Paul Wang
{"title":"SynTwin: A graph-based approach for predicting clinical outcomes using digital twins derived from synthetic patients.","authors":"Jason H Moore, Xi Li, Jui-Hsuan Chang, Nicholas P Tatonetti, Dan Theodorescu, Yong Chen, Folkert W Asselbergs, Mythreye Venkatesan, Zhiping Paul Wang","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The concept of a digital twin came from the engineering, industrial, and manufacturing domains to create virtual objects or machines that could inform the design and development of real objects. This idea is appealing for precision medicine where digital twins of patients could help inform healthcare decisions. We have developed a methodology for generating and using digital twins for clinical outcome prediction. We introduce a new approach that combines synthetic data and network science to create digital twins (i.e. SynTwin) for precision medicine. First, our approach starts by estimating the distance between all subjects based on their available features. Second, the distances are used to construct a network with subjects as nodes and edges defining distance less than the percolation threshold. Third, communities or cliques of subjects are defined. Fourth, a large population of synthetic patients are generated using a synthetic data generation algorithm that models the correlation structure of the data to generate new patients. Fifth, digital twins are selected from the synthetic patient population that are within a given distance defining a subject community in the network. Finally, we compare and contrast community-based prediction of clinical endpoints using real subjects, digital twins, or both within and outside of the community. Key to this approach are the digital twins defined using patient similarity that represent hypothetical unobserved patients with patterns similar to nearby real patients as defined by network distance and community structure. We apply our SynTwin approach to predicting mortality in a population-based cancer registry (n=87,674) from the Surveillance, Epidemiology, and End Results (SEER) program from the National Cancer Institute (USA). Our results demonstrate that nearest network neighbor prediction of mortality in this study is significantly improved with digital twins (AUROC=0.864, 95% CI=0.857-0.872) over just using real data alone (AUROC=0.791, 95% CI=0.781-0.800). These results suggest a network-based digital twin strategy using synthetic patients may add value to precision medicine efforts.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"96-107"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10827004/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139075251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}