聚类分析揭示了脊柱外科择期手术患者的社会经济差异。

Q2 Computer Science
Alena Orlenko, Philip J Freda, Attri Ghosh, Hyunjun Choi, Nicholas Matsumoto, Tiffani J Bright, Corey T Walker, Tayo Obafemi-Ajayi, Jason H Moore
{"title":"聚类分析揭示了脊柱外科择期手术患者的社会经济差异。","authors":"Alena Orlenko, Philip J Freda, Attri Ghosh, Hyunjun Choi, Nicholas Matsumoto, Tiffani J Bright, Corey T Walker, Tayo Obafemi-Ajayi, Jason H Moore","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This work demonstrates the use of cluster analysis in detecting fair and unbiased novel discoveries. Given a sample population of elective spinal fusion patients, we identify two overarching subgroups driven by insurance type. The Medicare group, associated with lower socioeconomic status, exhibited an over-representation of negative risk factors. The findings provide a compelling depiction of the interwoven socioeconomic and racial disparities present within the healthcare system, highlighting their consequential effects on health inequalities. The results are intended to guide design of fair and precise machine learning models based on intentional integration of population stratification.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"359-373"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250986/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cluster Analysis reveals Socioeconomic Disparities among Elective Spine Surgery Patients.\",\"authors\":\"Alena Orlenko, Philip J Freda, Attri Ghosh, Hyunjun Choi, Nicholas Matsumoto, Tiffani J Bright, Corey T Walker, Tayo Obafemi-Ajayi, Jason H Moore\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work demonstrates the use of cluster analysis in detecting fair and unbiased novel discoveries. Given a sample population of elective spinal fusion patients, we identify two overarching subgroups driven by insurance type. The Medicare group, associated with lower socioeconomic status, exhibited an over-representation of negative risk factors. The findings provide a compelling depiction of the interwoven socioeconomic and racial disparities present within the healthcare system, highlighting their consequential effects on health inequalities. The results are intended to guide design of fair and precise machine learning models based on intentional integration of population stratification.</p>\",\"PeriodicalId\":34954,\"journal\":{\"name\":\"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing\",\"volume\":\"29 \",\"pages\":\"359-373\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250986/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

这项工作展示了聚类分析在检测公平、无偏见的新发现方面的应用。在选择性脊柱融合术患者的样本人群中,我们发现了两个由保险类型驱动的总体亚群。医疗保险组与较低的社会经济地位相关,表现出过多的负面风险因素。研究结果令人信服地描述了医疗保健系统中存在的社会经济和种族差异,并强调了这些差异对健康不平等的影响。这些结果旨在指导设计基于有意整合人口分层的公平而精确的机器学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cluster Analysis reveals Socioeconomic Disparities among Elective Spine Surgery Patients.

This work demonstrates the use of cluster analysis in detecting fair and unbiased novel discoveries. Given a sample population of elective spinal fusion patients, we identify two overarching subgroups driven by insurance type. The Medicare group, associated with lower socioeconomic status, exhibited an over-representation of negative risk factors. The findings provide a compelling depiction of the interwoven socioeconomic and racial disparities present within the healthcare system, highlighting their consequential effects on health inequalities. The results are intended to guide design of fair and precise machine learning models based on intentional integration of population stratification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信