{"title":"Optimizing Computer-Aided Diagnosis with Cost-Aware Deep Learning Models.","authors":"Charmi Patel, Yiyang Wang, Thiruvarangan Ramaraj, Roselyne Tchoua, Jacob Furst, Daniela Raicu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Classical machine learning and deep learning models for Computer-Aided Diagnosis (CAD) commonly focus on overall classification performance, treating misclassification errors (false negatives and false positives) equally during training. This uniform treatment overlooks the distinct costs associated with each type of error, leading to suboptimal decision-making, particularly in the medical domain where it is important to improve the prediction sensitivity without significantly compromising overall accuracy. This study introduces a novel deep learning-based CAD system that incorporates a cost-sensitive parameter into the activation function. By applying our methodologies to two medical imaging datasets, our proposed study shows statistically significant increases of 3.84% and 5.4% in sensitivity while maintaining overall accuracy for Lung Image Database Consortium (LIDC) and Breast Cancer Histological Database (BreakHis), respectively. Our findings underscore the significance of integrating cost-sensitive parameters into future CAD systems to optimize performance and ultimately reduce costs and improve patient outcomes.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"108-119"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Classical machine learning and deep learning models for Computer-Aided Diagnosis (CAD) commonly focus on overall classification performance, treating misclassification errors (false negatives and false positives) equally during training. This uniform treatment overlooks the distinct costs associated with each type of error, leading to suboptimal decision-making, particularly in the medical domain where it is important to improve the prediction sensitivity without significantly compromising overall accuracy. This study introduces a novel deep learning-based CAD system that incorporates a cost-sensitive parameter into the activation function. By applying our methodologies to two medical imaging datasets, our proposed study shows statistically significant increases of 3.84% and 5.4% in sensitivity while maintaining overall accuracy for Lung Image Database Consortium (LIDC) and Breast Cancer Histological Database (BreakHis), respectively. Our findings underscore the significance of integrating cost-sensitive parameters into future CAD systems to optimize performance and ultimately reduce costs and improve patient outcomes.