Quentin Paletta , Guillermo Terrén-Serrano , Yuhao Nie , Binghui Li , Jacob Bieker , Wenqi Zhang , Laurent Dubus , Soumyabrata Dev , Cong Feng
{"title":"Advances in solar forecasting: Computer vision with deep learning","authors":"Quentin Paletta , Guillermo Terrén-Serrano , Yuhao Nie , Binghui Li , Jacob Bieker , Wenqi Zhang , Laurent Dubus , Soumyabrata Dev , Cong Feng","doi":"10.1016/j.adapen.2023.100150","DOIUrl":"10.1016/j.adapen.2023.100150","url":null,"abstract":"<div><p>Renewable energy forecasting is crucial for integrating variable energy sources into the grid. It allows power systems to address the intermittency of the energy supply at different spatiotemporal scales. To anticipate the future impact of cloud displacements on the energy generated by solar facilities, conventional modeling methods rely on numerical weather prediction or physical models, which have difficulties in assimilating cloud information and learning systematic biases. Augmenting computer vision with machine learning overcomes some of these limitations by fusing real-time cloud cover observations with surface measurements acquired from multiple sources. This Review summarizes recent progress in solar forecasting from multisensor Earth observations with a focus on deep learning, which provides the necessary theoretical framework to develop architectures capable of extracting relevant information from data generated by ground-level sky cameras, satellites, weather stations, and sensor networks. Overall, machine learning has the potential to significantly improve the accuracy and robustness of solar energy meteorology; however, more research is necessary to realize this potential and address its limitations.</p></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"11 ","pages":"Article 100150"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49191624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu Yang , Renjie Wang , Zhaojie Shen , Quanqing Yu , Rui Xiong , Weixiang Shen
{"title":"Towards a safer lithium-ion batteries: A critical review on cause, characteristics, warning and disposal strategy for thermal runaway","authors":"Yu Yang , Renjie Wang , Zhaojie Shen , Quanqing Yu , Rui Xiong , Weixiang Shen","doi":"10.1016/j.adapen.2023.100146","DOIUrl":"10.1016/j.adapen.2023.100146","url":null,"abstract":"<div><p>Lithium-ion batteries have become the best choice for battery energy storage systems and electric vehicles due to their excellent electrical performances and important contributions to achieving the carbon-neutral goal. With the large-scale application, safety accidents are increasingly caused by lithium-ion batteries. As the core component for battery energy storage systems and electric vehicles, lithium-ion batteries account for about 60% of vehicular failures and have the characteristics of the rapid spread of failure, short escape time, and easy initiation of fires, so the safety improvement of lithium-ion batteries is urgent. This study analyses the causes and mechanisms of lithium-ion batteries failures from design, production, and application, investigates its failure features and warning algorithms for thermal runaway, and the concept of long-medium-short graded warning is proposed based on the battery failure mechanism and its evolution to provide a basis for failure warning. As lithium-ion batteries fires are difficult to completely avoid, the characteristics of lithium-ion batteries fires are explored to improve battery structure and develop fire extinguishing agents and methods for fire prevention and suppression. Improving the safety of batteries is a systematic project, and at a time when there has been no breakthrough in the chemical system, improvements, such as build a practical graded warning system, are needed in all aspects of design, production, use and disposal to improve battery safety and minimize the risk of failure.</p></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"11 ","pages":"Article 100146"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49360386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiwang Xiang , Nan Zhou , Minda Ma , Wei Feng , Ran Yan
{"title":"Global transition of operational carbon in residential buildings since the millennium","authors":"Xiwang Xiang , Nan Zhou , Minda Ma , Wei Feng , Ran Yan","doi":"10.1016/j.adapen.2023.100145","DOIUrl":"10.1016/j.adapen.2023.100145","url":null,"abstract":"<div><p>The residential sector is the third-largest energy consumer and emitter globally and as such is at the forefront of the energy transition and net-zero emissions pathway. To accelerate the pace of decarbonization of residential buildings, this study is the first to present a bottom-up assessment framework integrated with the decomposing structural decomposition method to evaluate the emission patterns and decarbonization process of residential building operations in 56 countries spanning 12 regions worldwide from 2000 to 2020. The results show that (1) the operational carbon intensity of global residential buildings has maintained an annual decline of 1.2% over the past two decades, and energy intensity and average household size have been key to this decarbonization; (2) end uses have held an increasingly important role in decarbonizing global residential buildings (-46.3 kgs of carbon dioxide per household per year), with the largest contributors being appliances(38.3%), followed by space heating (21.2%) and lighting (12.6%); and (3) although the total decarbonization of global residential buildings was 7.1 gigatons of carbon dioxide and achieved a decarbonization efficiency of 9.4% per yr during this time period, regional decarbonization inequality and uneven distribution remained quite large, especially in emerging economy regions. Moreover, the uncertainty and robustness of the assessment framework are also tested, and adaptive high decarbonization strategies are further proposed for global residential buildings. Overall, this study reviews and compares global and regional performances and motivations for decarbonization to support national decarbonization efforts to reach net-zero emissions and advance the global residential building sector toward a carbon-free century.</p></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"11 ","pages":"Article 100145"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47212419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qianzhi Zhang , Jinyue Yan , H. Oliver Gao , Fengqi You
{"title":"A Systematic Review on power systems planning and operations management with grid integration of transportation electrification at scale","authors":"Qianzhi Zhang , Jinyue Yan , H. Oliver Gao , Fengqi You","doi":"10.1016/j.adapen.2023.100147","DOIUrl":"10.1016/j.adapen.2023.100147","url":null,"abstract":"<div><p>Transportation electrification plays a crucial role in mitigating greenhouse gas (GHG) emissions and enabling the decarbonization of power systems. However, current research on electric vehicles (EVs) only provides a fragmented examination of their impact on power system planning and operation, lacking a comprehensive overview across both transmission and distribution levels. This limits the effectiveness and efficiency of power system solutions for greater EV adoption. Conducting a systematic review of the effects of EVs on power transmission and distribution systems (e.g., grid integration, planning, operation, etc.), this paper aims to bridge the fragmented literature on the topic together by focusing on the interplay between transportation electrification and power systems. The study sheds light on the interplay between transportation electrification and power systems, delving into the importance of classifying EVs and charging infrastructure based on powertrain design, duty cycle, and typical features, as well as methods of capturing charging patterns and determining spatial-temporal charging profiles. Furthermore, we provide an in-depth discussion on the benefits of smart charging and the provision of grid-to-vehicle (G2V) and vehicle-to-grid (V2G) services for maintaining power system reliability. With the holistic systems approach, this paper can identify the main objectives and potential barriers of power transmission and distribution systems in accommodating transportation electrification at scale. Concurrently, it paves the way for a comprehensive understanding of technological innovation, transportation-power system decarbonization, policy pathways, environmental advantages, scenario designs, and avenues for future research.</p></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"11 ","pages":"Article 100147"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46352321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The unhinged paradox – what does it mean for the energy system?","authors":"Patrik Thollander , Jenny Palm","doi":"10.1016/j.adapen.2023.100143","DOIUrl":"10.1016/j.adapen.2023.100143","url":null,"abstract":"<div><p>In man-made energy systems like the electricity system, new concepts have the potential to influence and shape the development of the system. Sometimes the influence leads to a positive development and in other cases the new concept may lead into disadvantageous pathways. In this paper we argue that when a new concept is introduced, it may give rise to an <em>unhinged paradox.</em> An unhinged paradox implies that introducing a new concept, such as a new governance or management model, might lead to unintended consequences where some parts or the whole system become more unstable, or less <em>resilient</em> or <em>unhinged</em>. The transition of energy systems includes many “wicked” problems, i.e., aspects that are difficult to foresee the outcome of. The need for a rapid transition with an urgent need to implement new concepts together with a lack of or delayed feedback loops may give rise to wicked problems and unhinged systems. This <em>unhinged paradox</em> is likely to be found even beyond the scope of energy systems and will be further discussed in this paper in relation to the deregulation of the energy market, improved energy efficiency and energy flexibility.</p></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"10 ","pages":"Article 100143"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41912688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing Hu , Vinzenz Koning , Thomas Bosshard , Robert Harmsen , Wina Crijns-Graus , Ernst Worrell , Machteld van den Broek
{"title":"Implications of a Paris-proof scenario for future supply of weather-dependent variable renewable energy in Europe","authors":"Jing Hu , Vinzenz Koning , Thomas Bosshard , Robert Harmsen , Wina Crijns-Graus , Ernst Worrell , Machteld van den Broek","doi":"10.1016/j.adapen.2023.100134","DOIUrl":"10.1016/j.adapen.2023.100134","url":null,"abstract":"<div><p>To meet the European Union's 2050 climate neutrality target, future electricity generation is expected to largely rely on variable renewable energy (VRE). VRE supply, being dependant on weather, is susceptible to changing climate conditions. Based on spatiotemporally explicit climate data under a Paris-proof climate scenario and a comprehensive energy conversion model, this study assesses the projected changes of European VRE supply from the perspective of average production, production variability, spatiotemporal complementarity, and risk of concurrent renewable energy droughts.</p><p>For the period 2045–2055, we find a minor reduction in average wind and solar production for most of Europe compared to the period 1990–2010. At the country level, the impact of climate change on average VRE production is rather limited in magnitude (within <span><math><mrow><mo>±</mo><mn>3</mn><mo>%</mo></mrow></math></span> for wind and <span><math><mrow><mo>±</mo><mn>2</mn><mo>%</mo></mrow></math></span> for solar). The projected mid-term changes in other aspects of VRE supply are also relatively small. This suggests climate-related impacts on European VRE supply are less of a concern if the Paris-proof emission reduction pathway is strictly followed.</p><p>Based on spectral analysis, we identify strong seasonal wind-solar complementarities (with an anticorrelation between -0.6 and -0.9) at the cross-regional level. This reduces the demand for seasonal storage but requires coordinated cross-border efforts to develop a pan-European transmission infrastructure.</p><p>The risk of concurrent renewable energy droughts between a country and the rest of Europe remains non-negligible, even under the copperplate assumption. Central Western European countries and Poland are most vulnerable to such risk, suggesting the need for the planning of adequate flexibility resources.</p></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"10 ","pages":"Article 100134"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43997392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yi Wan , Tom Kober , Tilman Schildhauer , Thomas J. Schmidt , Russell McKenna , Martin Densing
{"title":"Conditions for profitable operation of P2X energy hubs to meet local demand with energy market access","authors":"Yi Wan , Tom Kober , Tilman Schildhauer , Thomas J. Schmidt , Russell McKenna , Martin Densing","doi":"10.1016/j.adapen.2023.100127","DOIUrl":"https://doi.org/10.1016/j.adapen.2023.100127","url":null,"abstract":"<div><p>This paper analyzes the operation of an energy hub on a community level with an integrated P2X facility and with access to energy markets. In our case, P2X allows converting power to hydrogen, heat, methane, or back to power. We consider the energy hub as a large prosumer who can be both a producer and consumer in the markets with the novelty that P2X technology is available. We investigate how such a P2X energy hub trades optimally in the electricity market and satisfies local energy demand under the assumption of a long-term strong climate scenario in year 2050. For numerical analysis, a case study of a mountain village in Switzerland is used. One of the main contributions of this paper is to quantify key conditions for profitable operations of such a P2X energy hub. In particular, the analysis includes impacts of influencing factors on profits and operational patterns in terms of different degrees of self-sufficiency and different availability of local renewable resources. Moreover, the access to real-time wholesale market electricity price signals and a future retail hydrogen market is assessed. The key factors for the successful operation of a P2X energy hub are identified to be sufficient local renewable resources and access to a retail market of hydrogen. The results also show that the P2X operation leads to an increased deployment of local renewables, especially in the case of low initial deployment; on the other hand, seasonal storage plays a subordinated role. Additionally, P2X lowers for the community the wholesale electricity market trading volumes.</p></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"10 ","pages":"Article 100127"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49749591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"TOM.D: Taking advantage of microclimate data for urban building energy modeling","authors":"Thomas R. Dougherty, Rishee K. Jain","doi":"10.1016/j.adapen.2023.100138","DOIUrl":"10.1016/j.adapen.2023.100138","url":null,"abstract":"<div><p>Urban Building Energy Modeling (UBEM) provides a framework for decarbonization decision-making on an urban scale. However, existing UBEM systems routinely neglect microclimate effects on building energy consumption, potentially leading to major sources of error. In this work, we attempt to address these sources of error by proposing the large scale collection of remote sensing and climate modeling data to improve the capabilities of existing systems. We explore situations when remote sensing might be most valuable, particularly when high quality weather station data might not be available. We show that lack of access to weather station data is unlikely to be driving existing errors in energy models, as most buildings are likely to be close enough to collect high quality data. We also highlight the significance of Landsat8’s thermal instrumentation to capture pertinent temperatures for the buildings through feature importance visualizations. Our analysis then characterizes the seasonal benefits of microclimate data for energy prediction. Landsat8 is found to provide a potential benefit of an 8% reduction in electricity prediction error in the spring and summertime of New York City. In contrast, NOAA RTMA may provide a benefit of a 2.5% reduction in natural gas prediction error in the winter and spring. Finally, we explore the potential of remote sensing to enhance the quality of energy predictions at a neighborhood level. We show that benefits for individual buildings translates to the regional level, as we can achieve improved predictions for groups of buildings.</p></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"10 ","pages":"Article 100138"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42294621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yiqun Pan , Mingya Zhu , Yan Lv , Yikun Yang , Yumin Liang , Ruxin Yin , Yiting Yang , Xiaoyu Jia , Xi Wang , Fei Zeng , Seng Huang , Danlin Hou , Lei Xu , Rongxin Yin , Xiaolei Yuan
{"title":"Building energy simulation and its application for building performance optimization: A review of methods, tools, and case studies","authors":"Yiqun Pan , Mingya Zhu , Yan Lv , Yikun Yang , Yumin Liang , Ruxin Yin , Yiting Yang , Xiaoyu Jia , Xi Wang , Fei Zeng , Seng Huang , Danlin Hou , Lei Xu , Rongxin Yin , Xiaolei Yuan","doi":"10.1016/j.adapen.2023.100135","DOIUrl":"10.1016/j.adapen.2023.100135","url":null,"abstract":"<div><p>As one of the most important and advanced technology for carbon-mitigation in the building sector, building performance simulation (BPS) has played an increasingly important role with the powerful support of building energy modelling (BEM) technology for energy-efficient designs, operations, and retrofitting of buildings. Owing to its deep integration of multi-disciplinary approaches, the researchers, as well as tool developers and practitioners, are facing opportunities and challenges during the application of BEM at multiple scales and stages, e.g., building/system/community levels and planning/design/operation stages. By reviewing recent studies, this paper aims to provide a clear picture of how BEM performs in solving different research questions on varied scales of building phase and spatial resolution, with a focus on the objectives and frameworks, modelling methods and tools, applicability and transferability. To guide future applications of BEM for performance-driven building energy management, we classified the current research trends and future research opportunities into five topics that span through different stages and levels: (1) Simulation for performance-driven design for new building and retrofit design, (2) Model-based operational performance optimization, (3) Integrated simulation using data measurements for digital twin, (4) Building simulation supporting urban energy planning, and (5) Modelling of building-to-grid interaction for demand response. Additionally, future research recommendations are discussed, covering potential applications of BEM through integration with occupancy and behaviour modelling, integration with machine learning, quantification of model uncertainties, and linking to building monitoring systems.</p></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"10 ","pages":"Article 100135"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43565590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing Wang, Rawad El Kontar, Xin Jin, Jennifer King
{"title":"Decarbonizing all-electric communities via carbon-responsive control of behind-the-meter resources","authors":"Jing Wang, Rawad El Kontar, Xin Jin, Jennifer King","doi":"10.1016/j.adapen.2023.100139","DOIUrl":"10.1016/j.adapen.2023.100139","url":null,"abstract":"<div><p>The progression of electrification in the building and transportation sectors brings new opportunities for energy decarbonization. With higher dependence on the grid power supply, the variation of the grid carbon emission intensity can be utilized to reduce the carbon emissions from the two sectors. Existing coordinated control methods for buildings with distributed energy resources (DERs) either consider electricity price or renewable energy generation as the input signal, or adopt optimization in the decision-making, which is difficult to implement in the real-world environment. This paper aims to propose and validate an easy-to-deploy rule-based carbon responsive control framework that facilitates coordination between all-electric buildings and electric vehicles (EVs). The signals of the grid carbon emission intensity and the local photovoltaics (PV) generation are used for shifting the controllable loads. Extensive simulations were conducted using a model of an all-electric mixed-use community in a cold climate to validate the control performance with metrics such as emissions, energy consumption, peak demand, and EV end-of-day state-of-charge (SOC). Our study identifies that 4.5% to 27.1% of annual emission reduction can be achieved with limited impact on energy costs, peak demand, and thermal comfort. Additionally, up to 32.7% of EV emission reduction can be obtained if the EV owners reduce the target SOC by less than 21.2%.</p></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"10 ","pages":"Article 100139"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49182033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}