Advances in Industrial and Manufacturing Engineering最新文献

筛选
英文 中文
Effect of uncertainty of material parameters on stress triaxiality and Lode angle in finite elasto-plasticity—A variance-based global sensitivity analysis 有限弹塑性中材料参数不确定性对应力三轴性和Lode角的影响——基于方差的全局灵敏度分析
Advances in Industrial and Manufacturing Engineering Pub Date : 2023-09-09 DOI: 10.1016/j.aime.2023.100128
M. Böddecker , M.G.R. Faes , A. Menzel , M.A. Valdebenito
{"title":"Effect of uncertainty of material parameters on stress triaxiality and Lode angle in finite elasto-plasticity—A variance-based global sensitivity analysis","authors":"M. Böddecker ,&nbsp;M.G.R. Faes ,&nbsp;A. Menzel ,&nbsp;M.A. Valdebenito","doi":"10.1016/j.aime.2023.100128","DOIUrl":"https://doi.org/10.1016/j.aime.2023.100128","url":null,"abstract":"<div><p>This work establishes a computational framework for the quantification of the effect of uncertainty of material model parameters on extremal stress triaxiality and Lode angle values in plastically deformed devices, whereby stress triaxiality and Lode angle are accepted as key indicators for damage initiation in metal forming processes. Attention is paid to components, the material response of which can be represented as elasto-plastic with proportional hardening as a prototype model, whereby the finite element method is used as a simulation approach generally suitable for complex geometries and loading conditions. Uncertainty about material parameters is characterized resorting to probability theory. The effects of material parameter uncertainty on stress triaxiality and Lode angle are quantified by means of a variance-based global sensitivity analysis. Such sensitivity analysis is most useful for apportioning the variance of the stress triaxiality and Lode angle to the uncertainty on material properties. The practical implementation of this sensitivity analysis is carried out resorting to a Gaussian process regression, Bayesian probabilistic integration and active learning in order to decrease the associated numerical costs. An example illustrates the proposed framework, revealing that parameters governing plasticity affect stress triaxiality and Lode angle the most.</p></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"7 ","pages":"Article 100128"},"PeriodicalIF":0.0,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49715313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A software for research and education in ductile damage 延性损伤研究与教育软件
Advances in Industrial and Manufacturing Engineering Pub Date : 2023-08-19 DOI: 10.1016/j.aime.2023.100127
R.F.V. Sampaio , N.S.M. Alexandre , J.P.M. Pragana , I.M.F. Bragança , C.M.A. Silva , P.A.F. Martins
{"title":"A software for research and education in ductile damage","authors":"R.F.V. Sampaio ,&nbsp;N.S.M. Alexandre ,&nbsp;J.P.M. Pragana ,&nbsp;I.M.F. Bragança ,&nbsp;C.M.A. Silva ,&nbsp;P.A.F. Martins","doi":"10.1016/j.aime.2023.100127","DOIUrl":"10.1016/j.aime.2023.100127","url":null,"abstract":"<div><p>This paper gives insight into the development and utilization of a computer software that uses raw experimental data from the load cells and DIC systems to obtain the instant of time at fracture <span><math><mrow><msub><mi>t</mi><mi>f</mi></msub></mrow></math></span>, the loading paths in principal strain space <span><math><mrow><msub><mi>ε</mi><mn>1</mn></msub><mo>=</mo><mi>f</mi><mrow><mo>(</mo><msub><mi>ε</mi><mn>2</mn></msub><mo>)</mo></mrow></mrow></math></span>, and their conversion into the space of effective strain vs. stress triaxiality <span><math><mrow><mover><mi>ε</mi><mo>‾</mo></mover><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>η</mi><mo>)</mo></mrow></mrow></math></span>. Special emphasis is given to the different assumptions and stress triaxiality measures that can be used to convert the loading paths from principal strain space into the space of effective strain vs. stress triaxiality. Results for double-action radial extrusion show the differences of treating the loading paths as linear or non-linear from beginning until the onset of failure by fracture. Results also allow concluding on the importance of accounting for the stress triaxiality derived from individual experimental measurements in an average sense over the entire loading paths, to avoid overestimation and mislocation of the fracture forming limits. The applicability of the software for education and training of students in formability is also discussed.</p></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"7 ","pages":"Article 100127"},"PeriodicalIF":0.0,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41542993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting tool life for side milling in C45 E using Colding and Taylor tool life models 用Colding和Taylor刀具寿命模型预测C45E侧铣刀的刀具寿命
Advances in Industrial and Manufacturing Engineering Pub Date : 2023-07-20 DOI: 10.1016/j.aime.2023.100126
Fredrik Kantojärvi , Elias Vikenadler , Daniel Johansson , Sören Hägglund , Rachid M’Saoubi
{"title":"Predicting tool life for side milling in C45 E using Colding and Taylor tool life models","authors":"Fredrik Kantojärvi ,&nbsp;Elias Vikenadler ,&nbsp;Daniel Johansson ,&nbsp;Sören Hägglund ,&nbsp;Rachid M’Saoubi","doi":"10.1016/j.aime.2023.100126","DOIUrl":"10.1016/j.aime.2023.100126","url":null,"abstract":"<div><p>This paper investigates the possibility of using empirical tool life models to predict tool life in a side milling application in a medium carbon steel, C 45E. To do this, an extensive dataset containing 46 data points with different machining parameters are produced. Four different empirical models: Taylor’s equation, Colding’s equation and Extended Taylor both using depth of cut and feed as well as an Extended Taylor using equivalent chip thickness has been considered. It is found that Colding’s equation is best suited to predict the tool life for this application. Furthermore, this paper suggests a novel method to fit the experimental data to the empirical models. Based on the results from previously published papers it is shown that the proposed method performs equally or better to determine the model constants.</p></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"7 ","pages":"Article 100126"},"PeriodicalIF":0.0,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41435824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D printing of silicone and polyurethane elastomers for medical device application: A review 用于医疗器械的有机硅和聚氨酯弹性体的3D打印:综述
Advances in Industrial and Manufacturing Engineering Pub Date : 2023-07-13 DOI: 10.1016/j.aime.2023.100125
Myka Mae Duran , Gafaru Moro , Yang Zhang , Aminul Islam
{"title":"3D printing of silicone and polyurethane elastomers for medical device application: A review","authors":"Myka Mae Duran ,&nbsp;Gafaru Moro ,&nbsp;Yang Zhang ,&nbsp;Aminul Islam","doi":"10.1016/j.aime.2023.100125","DOIUrl":"10.1016/j.aime.2023.100125","url":null,"abstract":"<div><p>Elastomers play a significant role across different fields including healthcare. They have similar mechanical properties to some of the soft tissues of the human body, which makes them useful in applications such as implants and prosthetics. However, forming elastomers for tailored-fit medical devices using 3D printing is still not yet widely utilized because of the current problems seen as innate to the elastomer properties, and the principles of 3D printing techniques. With a focus on silicone and polyurethane, this review details the state-of-the-art 3D printing techniques that are being modified over the years to allow its printability for medical applications. The paper also discusses the manufacturing challenges faced by the researchers in printing elastomers, and how these challenges are currently being addressed. This review paper shows further research direction and hopes to initiate further development of these solutions. This will allow the 3D printing of elastomers to gain widespread use in patient-specific medical devices and components with optimized functionality in the near future.</p></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"7 ","pages":"Article 100125"},"PeriodicalIF":0.0,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44921317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Void nucleation, growth and closure in cold forging: An uncoupled modelling approach 冷锻中的空洞形核、生长和闭合:一种不耦合的建模方法
Advances in Industrial and Manufacturing Engineering Pub Date : 2023-06-16 DOI: 10.1016/j.aime.2023.100124
R. Gitschel, A. Schulze, A.E. Tekkaya
{"title":"Void nucleation, growth and closure in cold forging: An uncoupled modelling approach","authors":"R. Gitschel,&nbsp;A. Schulze,&nbsp;A.E. Tekkaya","doi":"10.1016/j.aime.2023.100124","DOIUrl":"https://doi.org/10.1016/j.aime.2023.100124","url":null,"abstract":"<div><p>Forward rod extrusion experiments with high extrusions strains show a decrease of void area during forming. Most of the established damage modelling approaches have been developed without that knowledge and do not adequately cover the effect of void closure. Furthermore, many so called coupled models focus on the effect of ductile damage on the plastic flow of the material which results in more complex and numerically expensive models. But the effect of voids on plastic flow is insignificant for many cold forging applications, as shown in recent experiments. Thus, an uncoupled model is proposed that covers the effects of void nucleation, growth and closure. The proposed model is calibrated using void area fractions measured in forward rod extrusion experiments. A validation for various load paths shows good accordance with experimental data for void closure conditions under low triaxiality as well as for void evolution under higher triaxialities.</p></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"7 ","pages":"Article 100124"},"PeriodicalIF":0.0,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49734461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the automated characterisation of inclusion-induced damage in 16MnCrS5 case-hardening steel 16MnCrS5淬火钢夹杂物损伤的自动表征
Advances in Industrial and Manufacturing Engineering Pub Date : 2023-06-12 DOI: 10.1016/j.aime.2023.100123
Maximilian A. Wollenweber, Carl F. Kusche, Talal Al-Samman, Sandra Korte-Kerzel
{"title":"On the automated characterisation of inclusion-induced damage in 16MnCrS5 case-hardening steel","authors":"Maximilian A. Wollenweber,&nbsp;Carl F. Kusche,&nbsp;Talal Al-Samman,&nbsp;Sandra Korte-Kerzel","doi":"10.1016/j.aime.2023.100123","DOIUrl":"https://doi.org/10.1016/j.aime.2023.100123","url":null,"abstract":"<div><p>Manganese sulphide inclusions are commonly found in steels and known to facilitate the formation of deformation-induced damage sites in the form of voids during cold forming. These damage sites either exist as cracks, splitting the inclusion in two parts, or as delamination, separating the inclusion from the surrounding steel matrix. Both negatively influence the longevity of components, especially under cyclic loading. The analysis of damage is inherently scale-bridging, ranging from deteriorated global mechanical properties of the finished part, over the damage behaviour of individual inclusions, to the local description of individual voids. In this work, we set out to devise an analysis approach gathering information on all these scales. To this end, we conducted in-situ tensile tests while acquiring high resolution SEM panoramic images and analysed them with two neural networks, trained for this work, to detect damage sites with respect to the inclusions at which they nucleated. We find that the main damage mechanism during tensile deformation parallel to the length of inclusions is cracking and that damage evolution is equally influenced by void nucleation and void growth in the observed range of deformation. By focussing on the damaging behaviour of different inclusions, we show that the position of inclusions in the microstructure influences the resulting damage evolution and that the vicinity of pearlite bands leads to decreased damage formation.</p></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"7 ","pages":"Article 100123"},"PeriodicalIF":0.0,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49715385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of process parameters on single weld seam geometry and process stability in Laser Hot-Wire Cladding of AISI 52100 工艺参数对aisi52100激光热线熔覆单焊缝几何形状及工艺稳定性的影响
Advances in Industrial and Manufacturing Engineering Pub Date : 2023-06-07 DOI: 10.1016/j.aime.2023.100122
L. Budde , K. Biester , M. Lammers , J. Hermsdorf , S. Kaierle , L. Overmeyer
{"title":"Influence of process parameters on single weld seam geometry and process stability in Laser Hot-Wire Cladding of AISI 52100","authors":"L. Budde ,&nbsp;K. Biester ,&nbsp;M. Lammers ,&nbsp;J. Hermsdorf ,&nbsp;S. Kaierle ,&nbsp;L. Overmeyer","doi":"10.1016/j.aime.2023.100122","DOIUrl":"https://doi.org/10.1016/j.aime.2023.100122","url":null,"abstract":"<div><p>Steels with high carbon content can hardly or not at all be welded, but are of great interest for cladding applications due to their high hardness. In this study, the influence of process parameters on weld seam geometry and process stability is investigated when welding AISI 52100 bearing steel using the laser hot-wire cladding process. Process stability is evaluated using actual and set values for the wire feed rate and current parameters to determine a process window for a stable welding process. Weld seams are measured and analyzed in terms of width, height, contact angle, and shape. The effect of the process parameters on the weld seam geometry is investigated and appropriate mathematical functions to describe the geometry are determined. Process parameter sets in the range of 1-2 m/min wire feed rate and 45-75 A hot wire current were investigated. Unstable parameter sets occur clustered at high wire feed rate of 2 m/min for all hot wire currents. In addition, the process is unstable at high hot wire current of 75 A and low wire feed speed of 1 m/min. The remaining parameter sets resulted in a stable process. The investigated functions parabolic, cosinusoidal and circular arc for the mathematical description of the weld seam geometry, no clearly significant result could be determined. Only a trend towards the circular arc function and the parabolic function is apparent.</p></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"7 ","pages":"Article 100122"},"PeriodicalIF":0.0,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49715382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parallel tool-path generation for Additive Manufacturing: A GPU-based zigzag filling 增材制造并行刀具路径生成:一种基于GPU的Z字形填充
Advances in Industrial and Manufacturing Engineering Pub Date : 2023-05-01 DOI: 10.1016/j.aime.2022.100107
Ricardo Casagrande Faust, Rodrigo Minetto, Neri Volpato
{"title":"Parallel tool-path generation for Additive Manufacturing: A GPU-based zigzag filling","authors":"Ricardo Casagrande Faust,&nbsp;Rodrigo Minetto,&nbsp;Neri Volpato","doi":"10.1016/j.aime.2022.100107","DOIUrl":"10.1016/j.aime.2022.100107","url":null,"abstract":"<div><p>This paper presents a parallel zigzag (raster) tool-path generation method for Additive Manufacturing (AM). Based on the analysis of some ordinary serial algorithms, it was observed that some compute-intensive operations could be parallelized by using a Graphics Processing Unit (GPU) architecture. However, to achieve this, many challenges were faced and solved by designing a method to work concurrently with individual contour segments on multiple layers while keeping the data organized. The method’s ability to solve the zigzag generation problem was verified, and its performance was measured by running an exhaustive search for optimal raster angles to reduce manufacturing time. The results showed that the method was effective and generated relevant computational gain, being up to 9 times faster than its serial counterpart. In the tool-path optimization, the simulations found configurations yielding an average length of raster lines up to 38% longer, which, in turn, can reduce manufacturing time.</p></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"6 ","pages":"Article 100107"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47398803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increasing the industrial uptake of additive manufacturing processes: A training framework 增加增材制造工艺的工业吸收:培训框架
Advances in Industrial and Manufacturing Engineering Pub Date : 2023-05-01 DOI: 10.1016/j.aime.2022.100110
Panagiotis Stavropoulos , Panagis Foteinopoulos , John Stavridis , Harry Bikas
{"title":"Increasing the industrial uptake of additive manufacturing processes: A training framework","authors":"Panagiotis Stavropoulos ,&nbsp;Panagis Foteinopoulos ,&nbsp;John Stavridis ,&nbsp;Harry Bikas","doi":"10.1016/j.aime.2022.100110","DOIUrl":"https://doi.org/10.1016/j.aime.2022.100110","url":null,"abstract":"<div><p>Additive Manufacturing (AM) is one of the key technologies of Industry 4.0, offering unique advantages and capabilities. The interest in AM has been steadily increasing, leading to its rapid recent growth and improvement in all its aspects. However, its wider adoption is hindered by various barriers, the most important of which are the relatively high initial investment cost, part quality issues, limited material choices, and lack of expertise. The research community, AM machine developers, and larger enterprises are continuously contributing to the improvement of the first three factors. Nonetheless, the same cannot be stated for the barrier of limited expertise, leading the industrial sector to a perpetual lack of knowledge and, therefore, reluctance for a potential AM uptake. This study is addressing the need of the industrial sector for structured and organized expertise training for the fruitful exploitation of AM, paving the road for its wider application. The guidelines for an industrial-oriented AM training curriculum are set through the development of an AM training framework. The different AM thematic areas are classified into educational modules, which are separately analyzed, considering the participants’ active role and hands-on practice. The proposed step-by-step approach builds up from introductory to more advanced concepts, ensuring flexibility and simultaneously encompassing the needs of all industrial stakeholders (engineers, designers, managers, operators). Additionally, strategies corroborating the accessibility of the proposed framework are discussed, as well as dissemination policies and tools to facilitate its industrial endorsement.</p></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"6 ","pages":"Article 100110"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49712470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Life cycle assessment of metal products: A comparison between wire arc additive manufacturing and CNC milling 金属产品的生命周期评估:电弧增材制造与数控铣削的比较
Advances in Industrial and Manufacturing Engineering Pub Date : 2023-05-01 DOI: 10.1016/j.aime.2023.100117
Rafaela C. Reis , Samruddha Kokare , J.P. Oliveira , João C.O. Matias , Radu Godina
{"title":"Life cycle assessment of metal products: A comparison between wire arc additive manufacturing and CNC milling","authors":"Rafaela C. Reis ,&nbsp;Samruddha Kokare ,&nbsp;J.P. Oliveira ,&nbsp;João C.O. Matias ,&nbsp;Radu Godina","doi":"10.1016/j.aime.2023.100117","DOIUrl":"10.1016/j.aime.2023.100117","url":null,"abstract":"<div><p>The industrial progress made throughout these years has led to great results in terms of producing fast and with good quality. However, the impacts related to that production, whether these are environmental, economic, or social have been, at times, neglected. The manufacturing sector, as one of the most polluting sector, felt the urge to adapt to this industrial progress and find ways to produce with improved sustainability goals without compromising the quality of the final product and the production time. Industry easily understood the benefits of this greener approach, and, with this, new sustainable technologies started to emerge. Additive Manufacturing (AM) is one of those technologies that provide alternative sustainable paths to traditional manufacturing. In order to generalize the benefits of AM production in terms of sustainability, when compared to traditional processes, further investigations must be conducted. In this sense, the proposed work has the intention of finding the environmental impacts associated with a particular AM technique for the fabrication of metal parts, Wire Arc Additive Manufacturing (WAAM). A practical work based on the production of three different complexity metal parts considering an additive (WAAM) and a subtractive (Computer Numerical Control (CNC) Milling) manufacturing process is developed. To quantify the environmental impacts of both processes, the author resorts to the Life Cycle Assessment (LCA) methodology. The assessment is conducted in the SimaPro 9.2 software, accordingly to ISO 14044:2006 standard. The results allow a comparison between both types of manufacturing and enable the suggestion of measures to decrease the environmental footprint of WAAM. It was found that WAAM approach leads to a material saving ranging between 40% and 70% and an environmental impact reduction in the range of 12%–47%, compared to the subtractive approach for fabricating the 3 geometries considered in this study. The conclusions obtained are specific to this particular application and, once more, it is acknowledged that in order to reach a global understanding relative to this technology's environmental implications, extra research still needs to be made.</p></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"6 ","pages":"Article 100117"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47660365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信