Andrea Rega , Francesco Giuseppe Ciampi , Alessandro Zanella , Abdelgafar Ismail , Stanislao Patalano
{"title":"Implementation and evaluation of an Augmented Reality framework for sustainable practices in Industry 5.0","authors":"Andrea Rega , Francesco Giuseppe Ciampi , Alessandro Zanella , Abdelgafar Ismail , Stanislao Patalano","doi":"10.1016/j.aime.2025.100166","DOIUrl":"10.1016/j.aime.2025.100166","url":null,"abstract":"<div><div>Industry 5.0 requires practical methods to translate Augmented Reality (AR) concepts into effective shop floor applications, demonstrating their value to operators. This study introduces a framework for implementing and validating Augmented Reality (AR)-based tools designed to enhance sustainability awareness and assist operators in energy management within industrial settings. The approach combines a reference software architecture for rapid AR deployment with a three-part user-experience assessment, measuring usability (System Usability Scale - SUS), technology acceptance (Technology Acceptance Model - TAM), and cognitive workload (NASA-TLX). To test this framework, an AR-based prototype tool was deployed on enterprise smartphones and evaluated in three scenarios: monitoring service-utility energy consumption, monitoring production equipment, and conducting on- and off-the-job training of the operators. Thirty shop floor professionals completed tasks and provided UX feedback. The results showed good usability (mean SUS 78.4/100), with perceived ease of use and contextual relevance driving technology acceptance. Moreover Nasa TLX analysis indicates mental demand as the predominant factor. The findings confirm that the framework enables effective, human-centered AR deployments in modern industry and provides concrete design guidelines for future implementations.</div></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"11 ","pages":"Article 100166"},"PeriodicalIF":3.9,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144255313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on the influence of substrate preheating and deposition environment on the structural integrity of high carbon steel LMD parts of increased geometrical complexity","authors":"Federico Mazzucato, Anna Valente","doi":"10.1016/j.aime.2025.100167","DOIUrl":"10.1016/j.aime.2025.100167","url":null,"abstract":"<div><div>Laser Metal Deposition is finding growing industrial attractiveness thanks to its unique capability to locally restore worn metal components. In recent years, the industry is focusing on the application of metal Additive Manufacturing for the restoration of moulds and dies to improve process efficiency by reducing machine downtime and spare parts storage expenses. Although mould repair proved to be a cost-effective technological solution, the restoration of geometrically complex high carbon steel alloys through laser-based Additive Manufacturing still presents criticalities due to the low material weldability, high material oxygen reactivity, and high residual stresses generated by thermal cycling. This research work aims to analyse the influence of substrate preheating and the building environment on the structural integrity of steel specimens exhibiting 0.85 % carbon content and implementing geometrical features which are generally critical to restore by laser-based processes since they behave as thermal stress concentration. The performed preliminary observations highlight no delamination and no oxide regardless of process conditions. High-density (99.99 %) and crack-free high carbon steel depositions are achieved by reducing melt pool cooling rates during part manufacturing as a result of the increased environmental temperature surrounding the as-deposited material. Metallographic analysis demonstrates that carbide size decreases as cooling rates increase.</div></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"11 ","pages":"Article 100167"},"PeriodicalIF":3.9,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144272248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Zhang , J.C. Outeiro , C. Nouveau , B. Marcon , L.A. Denguir
{"title":"Performance of new cutting tool multilayer coatings for machining Ti-6Al-4V titanium alloy under cryogenic cooling conditions","authors":"Y. Zhang , J.C. Outeiro , C. Nouveau , B. Marcon , L.A. Denguir","doi":"10.1016/j.aime.2025.100165","DOIUrl":"10.1016/j.aime.2025.100165","url":null,"abstract":"<div><div>Cr/CrN/AlCrN multilayer coatings were recently developed to meet the high challenges of machining Ti-6Al-4V alloy under cryogenic cooling conditions. The multilayer coatings were optimized by multiple deposition conditions and were characterized by multi-methods. It was proved that they are suitable for tribological applications with this alloy under extreme conditions. This paper addresses the performance of these coatings through tool wear tests and analysis. This performance was compared with that obtained in standard machining conditions used in the aerospace industry, which include flood metalworking fluids and uncoated cemented carbide tools. The results show that the application of a multilayer coating can improve significantly the tool life under cryogenic cooling conditions compared to the flood conditions. 33 % improvement of tool life was found under cryogenic cooling conditions when comparing this coating to the uncoated one. A statistical analysis shows a strong correlation between tool wear and the machining forces. This analysis also permitted to build models for predicting tool wear in function of measured forces.</div></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"10 ","pages":"Article 100165"},"PeriodicalIF":3.9,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143928140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Toward generalizable machine learning prediction of downskin surface roughness in laser powder bed fusion","authors":"Jigar Patel, Mihaela Vlasea, Sagar Patel","doi":"10.1016/j.aime.2025.100163","DOIUrl":"10.1016/j.aime.2025.100163","url":null,"abstract":"<div><div>Downskin surface quality of laser powder bed fusion (L-PBF) remains a challenge due to the complex, multi-scale physics governing it. While numerical or experimental approaches alone can be significantly resource intensive, data-driven approaches such as machine learning (ML) have the potential to be more practical. However, the generalizability of ML models currently reported in literature is unclear; few ML models can predict reliably outside of their training domain. This study addresses these challenges by (i) demonstrating a downskin surface roughness classification model, trained on the largest reported dataset for downskin roughness (<span><math><mo>∼</mo></math></span>400 downskin specimens spanning five builds and two ferrous alloys) and (ii) conducting a thorough investigation of the model’s generalizability. Additionally, this study highlights critical issues such as data imbalance, generalization to unseen data, and the importance of rigorous evaluation. By implementing robust ML practices, we focused on model performance across different training and evaluation domains. Our findings indicate satisfactory performance when using the more conservative balanced accuracy metric, achieving about 95% inter-domain and 83% intra-domain accuracy. Although there is still room for improvement, these results demonstrate a significant reduction in the risk of overfitting, thereby enhancing the classifier’s generalizability. This work underscores the importance of methodological rigor in machine learning applications, advocating for greater attention to data treatment and evaluation strategies. This approach may ultimately lead to more effective and usable ML models. The data-centric results indicated that (i) physics-informed features can improve performance during domain shifts, and (ii) increased the size and variety of datasets allows even computationally light models to achieve favorable performance.</div></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"10 ","pages":"Article 100163"},"PeriodicalIF":3.9,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144115375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Scaling laws for ring-shaped beam profiles in laser-based powder bed fusion of metals","authors":"Jonas Grünewald, Moritz Wittemer, Katrin Wudy","doi":"10.1016/j.aime.2025.100164","DOIUrl":"10.1016/j.aime.2025.100164","url":null,"abstract":"<div><div>The application of alternative beam shapes is a current research trend to stabilize and accelerate the laser-based powder bed fusion of metals process. Although many publications show a reduced process dynamic and an enlargement of the process window for dense components using non-Gaussian beam profiles, a generally valid correlation between the energy input - in terms of the beam shape and the process parameters - and the melting mode is lacking. Consequently, intensive experimental work is required to qualify process parameters for alternative beam profiles. The present work aims to reduce this experimental effort for the parameter qualification of alternative beam profiles by estimating the melting modes based on dimensionless parameters. For this purpose, a simple heat conduction model is applied to a new database of melt track widths and depths generated with various ring-shaped beam profiles with different spot sizes. The approach shows a correlation between the dimensionless enthalpy and the melt track depth and width if the 2<sup>nd</sup> moment method is used to determine the spot size of the laser beam profiles. Finally, introducing a maximum dimensionless enthalpy considering the peak intensity of the beam profile used enables the estimation of the melting mode. Regardless of the beam profile, the transition from conduction mode to keyhole mode occurs between maximum dimensionless enthalpies of 6.25 ± 0.85 and 8.65 ± 0.30.</div></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"10 ","pages":"Article 100164"},"PeriodicalIF":3.9,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143903508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Mallor , S. Lani , V. Zambrano , H. Ghasemi-Tabasi , S. Calvo , A. Burn
{"title":"Integrating 3D printing, simulations and surrogate modelling: A comprehensive study on additive manufacturing focusing on a metal twin-cantilever benchmark","authors":"C. Mallor , S. Lani , V. Zambrano , H. Ghasemi-Tabasi , S. Calvo , A. Burn","doi":"10.1016/j.aime.2025.100162","DOIUrl":"10.1016/j.aime.2025.100162","url":null,"abstract":"<div><div>Additive Manufacturing by powder bed fusion of metals using a laser beam (PBF-LB/M) is constantly growing as an advanced technology to produce metal components. It offers greater design freedom compared to conventional processes and allows the production of complex, lighter geometries with numerous applications in a variety of industries. However, the time and cost required to achieve production readiness present significant challenges to the widespread adoption of new parts development. Success in builds is not reliable until tested, with common issues including distortion, and warpage. The expensive costs of physical iteration to optimize parameters calls for digital simulation to mitigate build failures. This paper presents the successful development of a surrogate model for predicting distortion in a PBF-LB/M metal part. The methodology is grounded on a design of experiments, additive manufacturing tests, finite element modelling playing a critical role, alongside reduced order methods to achieve a surrogate model for improving the additive manufacturing process. The reduced order method for creating the surrogate model is based on tensor decomposition and designed for easy integration into a digital twin, while preserving the underlying physics by retaining the effects of input variables on the final output. The validity of the proposed approach is demonstrated through a benchmark example involving the manufacturing of a metal twin-cantilever part using different laser power, scan speed, and preheating conditions. The twin-cantilever surrogate model developed embeds physics-based simulations and facilitates efficient estimation of deflections. It offers accurate results useful during process setting calibration and improves understanding of how the process parameters affect the final built part.</div></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"10 ","pages":"Article 100162"},"PeriodicalIF":3.9,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143785235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elizabeth M. Mamros , Fabian Maaß , Thomas H. Gnäupel-Herold , A. Erman Tekkaya , Brad L. Kinsey , Jinjin Ha
{"title":"Manipulating martensitic transformation and residual stress development in stress superposed incremental forming of SS304","authors":"Elizabeth M. Mamros , Fabian Maaß , Thomas H. Gnäupel-Herold , A. Erman Tekkaya , Brad L. Kinsey , Jinjin Ha","doi":"10.1016/j.aime.2025.100161","DOIUrl":"10.1016/j.aime.2025.100161","url":null,"abstract":"<div><div>Stress superposition is one of the strategies used in metal deformation processes to increase the material formability, decrease the required forming forces, and create highly customized components. To investigate the effects of tensile and compressive stresses superposed to the single point incremental forming (SPIF) process, experiments and numerical simulations were conducted for a stainless steel 304 (SS304) truncated square pyramid geometry. Tensile stresses were superposed in-plane on the specimen blank by a custom hydraulic frame, and compressive stresses were incorporated via a polyurethane die. Identified parameters for a martensitic transformation kinetics model for SS304 were used in a two-step finite element approach to predict the <span><math><mrow><mi>α</mi></mrow></math></span>’-martensite volume fraction. These results were compared to experimental results measured by a Feritscope at four locations along each pyramid wall and validated by electron backscatter diffraction. The residual stresses were measured using x-ray diffraction. The parts from each incremental forming process revealed differences in the residual stresses, which impacted the final geometries, and the <span><math><mrow><mi>α</mi></mrow></math></span>’-martensite volume fraction at the four measurement locations. The evolution of the stress state, defined by the stress triaxiality and Lode angle parameter, for each process contributed to the phase transformation variance. It was found that superposing both tensile and compressive stresses to SPIF resulted in the greatest phase transformation and lowest magnitude of residual stresses near the base and the greatest overall geometrical accuracy. Stress-superposed incremental forming can be implemented to manipulate final part properties, which is ideal for applications requiring highly customized parts, e.g., biomedical trauma fixation hardware.</div></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"10 ","pages":"Article 100161"},"PeriodicalIF":3.9,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143679445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiao-Lei Cui , Yuanyang Zhao , Shijie Yin , Jiuqiang He
{"title":"Deformation behavior of anisotropic TA18 titanium alloy tube in hydroforming process at room temperature","authors":"Xiao-Lei Cui , Yuanyang Zhao , Shijie Yin , Jiuqiang He","doi":"10.1016/j.aime.2025.100159","DOIUrl":"10.1016/j.aime.2025.100159","url":null,"abstract":"<div><div>While hydroforming of titanium alloy at room temperature is difficult due to its high strength, low hardening capacity, and significant springback, it is typically deformed into desired shape under high-temperature conditions exceeding 500°C, which increases the complexity of the process and raises costs. In this paper, the hydroforming method was used to manufacture TA18 titanium alloy variable-diameter tubular components at room temperature based on an innovative idea of useful wrinkles. The results show that the TA18 titanium alloy tube blank has a strong normal anisotropy of <span><math><mrow><mover><mi>r</mi><mo>‾</mo></mover></mrow></math></span> = 5.2, which is conducive to developing wrinkles while preventing excessive thinning. When the pressure increases from 0.4 <em>p</em><sub>s</sub> (<em>p</em><sub>s</sub> is initial yield internal pressure) to 0.8 <em>p</em><sub>s</sub>, the number of wrinkles produced on the tube blanks gradually decreases from three to two, and their width increases. When the pressure exceeds <em>p</em><sub>s</sub>, wrinkles cannot be formed on the tube blanks, which will undergo bulging deformation. In the simulation, the wrinkling behavior of the tube blanks does not match the experiment when the Mises yield criterion was used. While using the anisotropic Hill48 yield criterion, the wrinkling trend and development of wrinkles can be well predicted. Furthermore, the wrinkled tubes can be completely flattened under 70 MPa during calibration, and their wall thickness distributions are consistent with the simulation results, with the maximum thinning ratio of the formed components at 6.2%. All of these results provide basic support for manufacturing titanium alloy tubular components with large cross-sectional differences at room temperature using the hydroforming process.</div></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"10 ","pages":"Article 100159"},"PeriodicalIF":3.9,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143679444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yifan Li , José Marcelino Dias Filho , Shirin Dehgahi , Sajid Ullah Butt , Hani Henein , Ahmed Jawad Qureshi
{"title":"Hybrid investment casting of Al-Cu-Sc alloy-based lattice structures: Material and process characterization","authors":"Yifan Li , José Marcelino Dias Filho , Shirin Dehgahi , Sajid Ullah Butt , Hani Henein , Ahmed Jawad Qureshi","doi":"10.1016/j.aime.2025.100160","DOIUrl":"10.1016/j.aime.2025.100160","url":null,"abstract":"<div><div>This paper characterizes the development and optimization of a hybrid investment casting approach tailored for accurately crafting lattice structures with Al-4.5 wt pct Cu-0.4 wt pct Sc alloy, emphasizing precision in mold making, complex surface detailing, and porosity reduction. The core of the research is the description of the manufacturing procedure and the dimensional optimization strategies associated with this hybrid cast lattice geometries. After exploring the lattice shape produced through this advanced casting method, this research explores the microstructural properties and the solidification cooling rate of this hybrid investment casting. Furthermore, this work also addresses the complexity of the manufacturing protocol and the dimensional refinement method.</div></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"10 ","pages":"Article 100160"},"PeriodicalIF":3.9,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143654663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrea Montalti, Patrich Ferretti, Fiammetta Spano, Alfredo Liverani
{"title":"3D-printed motorcycle seats: Replicating polymer foam performance for rapid prototyping and rider comfort","authors":"Andrea Montalti, Patrich Ferretti, Fiammetta Spano, Alfredo Liverani","doi":"10.1016/j.aime.2025.100158","DOIUrl":"10.1016/j.aime.2025.100158","url":null,"abstract":"<div><div>The development of prototypes prior to the market launch of final products requires adapting production components to reduce costs and increase flexibility for potential modifications. While the manufacturing of rigid or structural components is well-established and widely practiced, the production of expanded materials presents significantly greater challenges due to the final product's reliance on the specific process employed. Changing the process to lower costs necessitates reproducing the same mechanical behaviour and appearance to ensure validation in terms of both style and function. This study focuses on replicating the behaviour of expanded polyurethane foam, commonly used in motorcycle seat padding, using thermoplastic polyurethane (TPU). The aim is to create a prototype or a customised version of the foam. The internal stochastic closed-cell structure is designed using slicing software, and test specimens are subsequently fabricated through Material Extrusion (MEX) additive manufacturing and subjected to compression testing. The results emphasise the critical influence of material hardness and infill density on the force-displacement curves. An experimental map, derived from three parameters (material hardness, elastic modulus, and foam density) illustrates the behaviour of the specimens, with iso-lines representing constant density. This map serves as a valuable tool for accurately replicating desired foam properties, providing guidance on material selection based on force-displacement characteristics.</div></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"10 ","pages":"Article 100158"},"PeriodicalIF":3.9,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143479400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}