{"title":"3D-printed multi-functional foamed concrete building components: Material properties, component design, and 3D printing application","authors":"","doi":"10.1016/j.dibe.2024.100483","DOIUrl":"10.1016/j.dibe.2024.100483","url":null,"abstract":"<div><div>The use of multi-density foamed concretes (FCs) to produce multi-functional building components by 3D Concrete Printing (3DCP) is investigated. The use of medium-density 3D-printed foamed concrete (3DPFC_800), primarily serving a load-bearing role, and ultra-lightweight foamed concrete (ULFC_300), as thermal insulation material poured in the voids defined by the former, is proposed. This enables meeting diverse performance requirements within a single cementitious matrix, eliminating the need for multiple materials. The main properties of the proposed mixes are investigated. The compressive strength and thermal conductivity are equal to 7.04 MPa and 0.205 W/mK, and 1.43 MPa and 0.072 W/mK for 3DPFC_800 and ULFC_300, respectively. A successful 2D-printing test validates the suitability of 3DPFC_800 for 3DCP, and a robotic arm is employed for 3DCP tests. The proposed application allows for further knowledge on the use of FC in 3DCP and the identification of some issues and challenges that still need to be addressed.</div></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":null,"pages":null},"PeriodicalIF":6.2,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141406969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Yang , Fang Liu , Quanmin Xie , Mei Yang , Yidi Li , E. Ranjith Kumar , Jinshan Sun
{"title":"Exploration of iron ore tailings with high volume in sustainable cement and ecofriendly cementitious material","authors":"G. Yang , Fang Liu , Quanmin Xie , Mei Yang , Yidi Li , E. Ranjith Kumar , Jinshan Sun","doi":"10.1016/j.dibe.2024.100482","DOIUrl":"10.1016/j.dibe.2024.100482","url":null,"abstract":"<div><p>In this work, sustainable cement clinkers and ecofriendly cementitious materials (ECMs) were prepared with iron ore tailings (IOTs). Alternative raw meals with IOTs were sintered to cement clinkers by conventional sintering processes. The results of X-ray diffraction (XRD), scanning electron microscopy (SEM) and mechanical tests suggested that the cement clinker within 10 wt% IOTs had better quality than those without IOTs. In addition, the hydration and hydration products of the IOT-based cement were analyzed via XRD and SEM. Before preparing ECMs, IOTs were pretreated with a 100 mesh Tyler screen to remove silt and clay. Then, the pretreated IOTs and whole IOTs partly instead of fine aggregates, together with IOT-based cement were used to produce ECMs. The ratio of water-binder and compressive strength properties of the ECMs were investigated. It is suggested that the pretreated IOTs sand can be used as much as 60 wt%, while the amount of whole IOTs sand must be limited to 20 wt% before the performance dramatically decrease. These findings suggest that disposal of a high volume of Yeshan IOTs in sustainable construction building materials has feasibility and operational significance.</p></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":null,"pages":null},"PeriodicalIF":6.2,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666165924001637/pdfft?md5=e66069ab1d0ccacfc1b93ced4a41a92a&pid=1-s2.0-S2666165924001637-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141407626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chunqi Zhu , Eryu Zhu , Bin Wang , Zhu Zhang , Mingyang Li
{"title":"Mesoscale fracture simulation of recycled aggregate concrete under uniaxial compression based on cohesive zone model","authors":"Chunqi Zhu , Eryu Zhu , Bin Wang , Zhu Zhang , Mingyang Li","doi":"10.1016/j.dibe.2024.100481","DOIUrl":"https://doi.org/10.1016/j.dibe.2024.100481","url":null,"abstract":"<div><p>It is important to clarify the uniaxial compressive mechanical properties and fracture mechanism of recycled aggregate concrete (RAC) from a mesoscale perspective for its further application in engineering. In this study, the cohesive zone model (CZM) based on the Benzeggagh–Kenane (B–K) criterion was used to simulate the RAC's complex fracture behavior. Meanwhile, the effects of cohesive element parameters and mechanical properties of mesoscale components on macroscopic mechanical properties and damage modes of RAC were investigated. The results show that the CZM based on the B–K criterion can be used to characterize the whole fracture process of RAC. The RAC's compressive strength has an exponential relationship with the shear strengths of the mortars as well as the ITZs and is quadratically related to the logarithm of cohesive element stiffness. The RAC's damage morphology is more sensitive to the change of element stiffness, Mode II fracture energy and hybrid fracture energy ratio.</p></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":null,"pages":null},"PeriodicalIF":8.2,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666165924001625/pdfft?md5=d943e6c8a52a33dffa40c451035f4b4d&pid=1-s2.0-S2666165924001625-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141314323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing the maintenance strategy and cost in systems with surrogate assisted multiobjective evolutionary algorithms","authors":"David Greiner, Andrés Cacereño","doi":"10.1016/j.dibe.2024.100478","DOIUrl":"https://doi.org/10.1016/j.dibe.2024.100478","url":null,"abstract":"<div><p>Digital twins need efficient methodologies to design maintenance strategies for decision-making purposes. Recently, a methodology coupling computational simulation and multiobjective evolutionary algorithms has been proposed for developing maintenance strategies consisting in assigning times for preventive maintenance activities and designing the layout of components of a system, minimizing the unavailability of the system and the strategy cost.</p><p>Here, surrogate assisted evolutionary algorithms (SAEAs) enhance the multiobjective optimization and improve the drawback of the computational cost of the maintenance strategy assessment based on discrete simulation. Several Kriging surrogates were tested.</p><p>Two industrial test cases are handled in the experimental section, where the methodology succeed in obtaining nondominated designs improving previous benchmarks, and enhancing state-of-the-art multiobjective optimizers, with up to an order of magnitude in terms of the number of fitness function evaluations. Results show that using multiobjective SAEAs in the development of optimal maintenance strategies could foster and improve digital twins operations.</p></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":null,"pages":null},"PeriodicalIF":8.2,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666165924001595/pdfft?md5=7794efd0596092cf9e2a2b55c50fbb3d&pid=1-s2.0-S2666165924001595-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141294549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An alternative approach for detecting cavities in reinforced concrete structures using GPR A-scan data","authors":"Jihoon Kim, Donghwi Kim, Heejung Youn","doi":"10.1016/j.dibe.2024.100479","DOIUrl":"https://doi.org/10.1016/j.dibe.2024.100479","url":null,"abstract":"<div><p>This paper introduces an alternative approach for detecting cavities in reinforced concrete walls using Ground Penetrating Radar (GPR) A-scan data. GPR, leveraging electromagnetic waves, is extensively applied for cavity detection within structures. The nature of electromagnetic waves, significantly influenced by reflective media and attenuating through them, requires specialized analysis methods for data interpretation. Traditional methods often involve identifying and eliminating overlapping reflection patterns or adjusting signal magnitude at specific depths to isolate peak signals from the target object's surface, which can be subjective and complex. To overcome these challenges, this study proposes quantitatively assessing the presence of cavities by analyzing the integral area of A-scan data within suspected ranges. Observations indicate a substantial difference in reflection patterns between areas with and without cavities, showcasing the potential of this approach for quantitative cavity detection. This approach offers a more objective and quantitative basis for identifying cavities in reinforced concrete structures.</p></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":null,"pages":null},"PeriodicalIF":8.2,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666165924001601/pdfft?md5=32e5f033e30690cf13765cc72ebd198a&pid=1-s2.0-S2666165924001601-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141302597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling indoor thermal comfort in buildings using digital twin and machine learning","authors":"Ziad ElArwady , Ahmed Kandil , Mohanad Afiffy , Mohamed Marzouk","doi":"10.1016/j.dibe.2024.100480","DOIUrl":"https://doi.org/10.1016/j.dibe.2024.100480","url":null,"abstract":"<div><p>Digital Twin (DT) concept is used in different domains and industries, including the building industry, as it has physical and digital assets with the help of Building Information Modeling (BIM). Technologies and methodologies constantly enrich the building industry because the amount of data generated during different building stages is considerable and has a tremendous effect on the lifecycle of a building. Previous research underscores the importance of seamlessly exchanging information between physical and digital assets within a comprehensive framework, particularly emphasizing the integration of BIM data with various systems to enhance efficiency and prevent information loss. Despite advancements in technologies, challenges persist in optimizing methods for integrating BIM data into DT frameworks, including ensuring interoperability, scalability, and real-time monitor and control. This study addresses this research gap by proposing a comprehensive platform that integrates the DT concept with IoT and BIM technologies. The platform is developed in five main stages: 1) acquiring electronic data of the building from the laser scanner, 2) developing a Wi-Fi IoT module and BIM data for physical assets and digital replica, 3) constructing the DT elements of the platform, 4) performing data analysis 5) implementing thermal comfort prediction models. Two machine learning models (Facebook prophet, NeuralProphet) are implemented to predict thermal comfort. The best predictive model is identified by evaluating its error function using historical training data collected during facility operation. A case study demonstrates the practical application of the proposed framework. The case study involves a real building where the platform is implemented to monitor and control indoor environments. By utilizing predefined data in BIM models, the platform ensures data accuracy, consistency, and usability. The case outputs reveal that Neuralprophet provides good prediction results.</p></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":null,"pages":null},"PeriodicalIF":8.2,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666165924001613/pdfft?md5=b3d360e6a4a4d23029dd8748a2801860&pid=1-s2.0-S2666165924001613-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141291283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luigi Massaro , Luciana Di Gennaro , Giorgio Frunzio , Ester Sallicandro , Roberto Serpieri
{"title":"Understanding past rules of the art in columna-capreoli wood trusses","authors":"Luigi Massaro , Luciana Di Gennaro , Giorgio Frunzio , Ester Sallicandro , Roberto Serpieri","doi":"10.1016/j.dibe.2024.100472","DOIUrl":"https://doi.org/10.1016/j.dibe.2024.100472","url":null,"abstract":"<div><p>A transversely isotropic structural model for wood, based on a polytope strength criterion, is proposed and deployed in the analysis of solid wood <em>columna-capreoli</em> A-trusses reproducing the geometry and connection details of those currently erected in the Aula Magna of the Monastery San Lorenzo ad Septimum in Aversa. The predictivity of the polytope strength criterion is assessed verifying its capability of identifying the closest crisis mode against experimental evidence from a simple flexural test, with minimal wood sacrifice. The model is employed in parametric optimization analyses to infer a design provision for the <em>columna</em>-<em>capreoli</em> connection which appears to be in reasonable agreement with the rule of the art empirically inferable from the observation of many samples of open-node King Post A-trusses belonging to the architectural heritage in Campania of historical and artistic value. A final discussion examines a perspective of extending these optimization analyses to the sustainability of the built environment.</p></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":null,"pages":null},"PeriodicalIF":8.2,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666165924001534/pdfft?md5=c3b6091dd18298abc35a3aa4f7e8a71a&pid=1-s2.0-S2666165924001534-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141291284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A BIM-based Tool for Embodied Carbon Assessment using a Construction Classification System","authors":"Sara Parece, Ricardo Resende, Vasco Rato","doi":"10.1016/j.dibe.2024.100467","DOIUrl":"10.1016/j.dibe.2024.100467","url":null,"abstract":"<div><p>Life Cycle Assessment (LCA) is widely accepted for evaluating a building's environmental footprint. Building Information Modelling (BIM) has become the go-to strategy for LCA during design. Still, despite BIM-LCA automating detailed quantity extraction, challenges persist, such as a lack of standardised geometry modelling and information management and a common language between LCA and BIM data.</p><p>This study proposes a method to assess embodied carbon from BIM models classified using a construction classification system that provides a data structure, maps BIM objects and environmental impacts in LCA databases and matches different levels of development (LoD) in BIM models. The method was tested on real-world models, resulting in 375 kgCO<sub>2</sub>e/m<sup>2</sup> for the single residential and 426 kgCO<sub>2</sub>e/m<sup>2</sup> for the multi-residential building. These findings revealed its ability to adapt to different LoD and modelling techniques, expedite assessing different design options, and potentially save up to 20 hours of work remodelling.</p></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":null,"pages":null},"PeriodicalIF":8.2,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666165924001480/pdfft?md5=9e6e1f7dd2ef92b4971019462785d5e6&pid=1-s2.0-S2666165924001480-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141135501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Corrigendum to “Concrete 3D printing technology for sustainable construction: A review on raw material, concrete type and performance” [Dev. Built. Environ. 17 (2024) 100378]","authors":"","doi":"10.1016/j.dibe.2024.100442","DOIUrl":"10.1016/j.dibe.2024.100442","url":null,"abstract":"","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":null,"pages":null},"PeriodicalIF":6.2,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666165924001236/pdfft?md5=aa6274616e76e1eb72c13749b352c139&pid=1-s2.0-S2666165924001236-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140795049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Corrigendum to “General reduced vehicle model for simulating truck-bridge pier collisions” [Dev. Built. Environ. 16 (2023) 100233]","authors":"","doi":"10.1016/j.dibe.2024.100425","DOIUrl":"10.1016/j.dibe.2024.100425","url":null,"abstract":"","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":null,"pages":null},"PeriodicalIF":6.2,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666165924001066/pdfft?md5=bc21db06371e7af014879f39c32c0d88&pid=1-s2.0-S2666165924001066-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}