{"title":"Unravelling the deformation mechanisms in Ni-rich high entropy alloy with tailored Ti content: An experimental and atomistic approach","authors":"Sudhansu Maharana, Sankalp Biswal, Manashi Sabat, D.K.V.D. Prasad, Tapas Laha","doi":"10.1016/j.ijplas.2025.104346","DOIUrl":"10.1016/j.ijplas.2025.104346","url":null,"abstract":"<div><div>Ti-containing face centred cubic (FCC) high entropy alloys (HEAs) have garnered significant attention due to their exceptional mechanical properties. Nevertheless, the role of Ti on contributory strengthening mechanisms and the corresponding deformation behavior remains less explored till date. The present study sheds light on evolution of microscale plastic deformation mechanism and the associated strengthening effects induced by Ti addition in a novel spark plasma sintered Ni<sub>46-x</sub>Co<sub>18-x</sub>Al<sub>12</sub>Cr<sub>8</sub>Fe<sub>12</sub>Mo<sub>4-y</sub>Ti<sub>2z</sub> (<em>x</em> = 0, <em>y</em> = 0, <em>z</em> = 0; <em>x</em> = 0, 1 and 2, <em>y</em> = 2, <em>z</em> = 1, 2 and 3 at. %) HEA through a combination of experimental analyses and molecular dynamics (MD) simulations. The sintered compacts were composed of FCC solid solution with presence of minor amounts of brittle Cr-rich and Mo-rich sigma (σ) phases, along with essential L1<sub>2</sub> phase in the FCC matrix. Yield strength and compressive strength increased continuously with increasing Ti content, from 1130 MPa and 1809 MPa in Ti-free HEA to 1452 MPa and 2011 MPa in 6 at. % Ti containing HEA, respectively, while maintaining an appreciable fracture strain > 26 % in all the consolidated HEAs. Such remarkable mechanical properties are primarily attributed to inherent solid solution strengthening from Ti-induced lattice distortion, along with synergistic effect of narrow twin boundaries, finer grain size and precipitation strengthening from L1<sub>2</sub> phase. Furthermore, MD simulation revealed that increasing Ti content lowered stacking fault energy of the HEAs and promoted formation of deformation twins (DTs) and stacking faults (SFs). Characterization of deformed microstructures at sequential strain levels showed that plastic deformation in Ti-free HEA was primarily mediated by ordinary dislocation slip, whereas with increase in Ti content, plastic deformation predominantly proceeded through formation of SF networks and DTs, alongside dislocation gliding. Additionally, increased dynamic recrystallization fraction in higher Ti-containing HEAs during loading, attributed to increased pre-existing strain within grains, contributed in retaining impressive ductility. This study provides comprehensive insights into the deformation mechanisms in Ti-added Ni-rich FCC HEAs and offers guidance for designing high-performance HEAs.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"189 ","pages":"Article 104346"},"PeriodicalIF":9.4,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143846553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaowei Li , Yaxin Zhu , Lv Zhao , Shuang Liang , Minsheng Huang , Zhenhuan Li
{"title":"Two-phase microstructure-based crystal plasticity constitutive model for nickel-based single crystal superalloys incorporating Re effects on rafting and dislocation evolution","authors":"Xiaowei Li , Yaxin Zhu , Lv Zhao , Shuang Liang , Minsheng Huang , Zhenhuan Li","doi":"10.1016/j.ijplas.2025.104343","DOIUrl":"10.1016/j.ijplas.2025.104343","url":null,"abstract":"<div><div>The unique two-phase microstructure of nickel-based single crystal superalloys (NBSCSs) imparts exceptional high-temperature mechanical properties, promoting the use of NBSCSs for turbine blades. A moderate addition of rhenium (Re) can further enhance the mechanical properties by influencing dislocation evolution within the two-phase microstructure and mitigating rafting. The present work aims to quantitatively correlate dislocation evolution and rafting in the two-phase microstructure with the macroscopic mechanical behavior of NBSCSs. To this end, a representative volume element (RVE) consisting of a cubic precipitate surrounded by horizontal and vertical matrix channels is built, and a micromechanical homogenization method based on small perturbation analysis is adopted. To improve the computational efficiency while maintaining a reasonable accuracy, an approximate algorithm is proposed. Based on this, a two-phase microstructure-based crystal plasticity (CP) constitutive model that incorporates Re-influenced dislocation evolution mechanisms and accounts for Re-influenced evolution of the two-phase microstructure (i.e., rafting) has been developed. Using a unified set of constitutive parameters, this CP model successfully predicts both the instantaneous plasticity and prolonged-time creep behaviors of NBSCSs under various temperatures, loading rates and loading orientations. It is noteworthy that the influence of Re doping on both dislocation evolution and rafting is considered in the present CP model, significantly enhancing its ability for describing the mechanical behavior of NBSCSs.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"189 ","pages":"Article 104343"},"PeriodicalIF":9.4,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143836870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wen An , Jiang-Peng Yang , Chuan-Zhi Liu , Qi-Lin Xiong
{"title":"Effect of twinning on shear localization of Al0.1CoCrFeNi high entropy alloy at high strain rates: Experiment and crystal plasticity modeling","authors":"Wen An , Jiang-Peng Yang , Chuan-Zhi Liu , Qi-Lin Xiong","doi":"10.1016/j.ijplas.2025.104339","DOIUrl":"10.1016/j.ijplas.2025.104339","url":null,"abstract":"<div><div>As one of the most important plastic deformation mechanisms of high-entropy alloys, deformation twinning can increase the strength without losing plasticity. Nevertheless, recent studies have shown that high-density twins can form \"soft spots\" and promote the occurrence of shear localization failure at high strain rates. The extent to which deformation twins contribute to the formation of shear localization remains unclear. In this study, a series of dynamic uniaxial compression experiments have been performed with Al<sub>0.1</sub>CoCrFeNi HEAs under different conditions to disclose the dynamic recrystallization mechanism. Corresponding to the dynamic recrystallization and plastic dissipation mechanisms at high strain rates, a dislocation entanglement model has been established in conjunction with deformation twinning and physically based heat dissipation to capture the process of shear localization formation. The dislocation entanglement model has been integrated into the theoretical framework of crystal plasticity to perform finite element simulations of high-strain rate deformations. The results predicted by the crystal plasticity simulations are in good agreement with the experimental data, confirming the rationality of the new constitutive model. Deformation twinning can significantly improve strain hardening ability and resistance to shear localization. Interestingly, when the volume fraction of twins reaches a certain level, the mechanism of twin-assisted continuous dynamic recrystallization is triggered due to the interaction between dislocations and twins, resulting in the formation of many “soft spots” (corresponding to the twin region with high density). Upon further deformation, these “soft spots” continue to evolve and aggregate to eventually form the bands of shear localization. Our results can be used for the microstructure design of dynamic high-performance metals with high strength and plasticity to artificially control shear localization.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"189 ","pages":"Article 104339"},"PeriodicalIF":9.4,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143822646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yaojie Wen , Yang Gao , Ramasubramanian Lakshmi Narayan , Wei Cai , Pei Wang , Xiaoding Wei , Baicheng Zhang , Upadrasta Ramamurty , Xuanhui Qu
{"title":"Tensile behavior of additively manufactured Inconel 718 and stainless steel 316L with compositionally graded joints","authors":"Yaojie Wen , Yang Gao , Ramasubramanian Lakshmi Narayan , Wei Cai , Pei Wang , Xiaoding Wei , Baicheng Zhang , Upadrasta Ramamurty , Xuanhui Qu","doi":"10.1016/j.ijplas.2025.104342","DOIUrl":"10.1016/j.ijplas.2025.104342","url":null,"abstract":"<div><div>The microstructure and tensile behavior of laser powder bed fusion (LPBF) processed 316L austenitic stainless steel (316L) and Inconel 718 Ni-based superalloy (IN718) coupons with compositionally graded joints (CGJ), spanning lengths of 0, 10 and 20 mm, in the as built and heat-treated conditions, are investigated. In the as built condition, the microstructure of pure 316L and IN718 ligaments consist of micron-sized sub-grains present within 〈001〉 textured columnar grains, whereas CGJs contain a mixture of randomly textured columnar and equiaxed grains. Heat treatment, involving solutionizing above 1040 °C with subsequent ageing at 720 and 620 °C, leads to the recrystallization of portions with > 85 wt. % IN718 of the CGJ coupons. Higher composition gradient span, in both the as built and heat-treated states, improves the yield and tensile strengths of the specimens, but compromises ductility. Simulations indicate that CGJs with shallower composition gradients have lower fluctuations in the stress triaxiality, von mises equivalent stress, and the maximum shear stress compared to those with sharper gradients. These mechanical property variations and the deformation characteristics of the CGJ specimens are analyzed in detail by considering the varying degrees of plastic constraint on the 100 wt. % 316L and the degree of interactions between strain-generated dislocations and geometrically necessary dislocations. Finally, the effectiveness of CGJ in enhancing the tensile properties of the 316L/IN718 joints and the geometrical considerations for designing such joints for different alloy combinations is discussed.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"189 ","pages":"Article 104342"},"PeriodicalIF":9.4,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143822647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Li , Yaxin Zhu , Lv Zhao , Shuang Liang , Minsheng Huang , Zhenhuan Li
{"title":"Investigate irradiation hardening behavior in BCC refractory high-entropy alloys using phase-field modeling informed by atomistic simulations of displacement cascades","authors":"Jie Li , Yaxin Zhu , Lv Zhao , Shuang Liang , Minsheng Huang , Zhenhuan Li","doi":"10.1016/j.ijplas.2025.104340","DOIUrl":"10.1016/j.ijplas.2025.104340","url":null,"abstract":"<div><div>Refractory high-entropy alloys (RHEAs) exhibit excellent anti-irradiation properties, making them promising candidates for application in advanced nuclear reactors. In this study, molecular statics (MS) and molecular dynamics (MD) simulations are conducted to investigate the local unstable stacking fault energy (USFE) in RHEAs induced by primary knock-on atoms (PKAs) of displacement cascades. Based on these atomistic simulations, a phase-field dislocation dynamics (PFDD) model is developed, incorporating the effects of chemical composition fluctuations and displacement cascades on local USFE in RHEAs using a random statistical approach. Using this PFDD model, the planar motion of edge and screw dislocations, as well as the cross-slip behavior of screw dislocations, in WTaCrV are examined. The results indicate that the cascade region can effectively pin edge dislocations and hinder the nucleation of kink pairs in screw dislocations, leading to irradiation hardening. However, the low local USFE caused by chemical composition fluctuations in WTaCrV allows edge dislocation segments near pinning sites to bow out, dragging pinned dislocation segments and reducing the pinning effect. Additionally, the low local USFE promotes the nucleation and migration of kink pairs in screw dislocations. Furthermore, for the case of screw dislocation cross-slip, the irradiation hardening is alleviated as nonplanar kink pairs recede to the habit plane. These simulation results reveal the mesoscale internal mechanisms underlying anti-irradiation hardening in RHEAs. Based on these findings, mesoscale theoretical models describing dislocation motion and irradiation hardening are proposed, and they are verified experimentally. With these models, the irradiation hardening behavior of other RHEAs can be predicted. These findings can guide the design and preparation of advanced anti-irradiation RHEAs and contribute to the development of upscaled theoretical models and simulation methods.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"189 ","pages":"Article 104340"},"PeriodicalIF":9.4,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143820082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A plasticity-induced internal length mean field model based on statistical analyses of EBSD and nanoindentation data","authors":"Layal Chamma , Jean-Marc Pipard , Artem Arlazarov , Thiebaud Richeton , Stéphane Berbenni","doi":"10.1016/j.ijplas.2025.104327","DOIUrl":"10.1016/j.ijplas.2025.104327","url":null,"abstract":"<div><div>A new plasticity-induced internal length mean field model (ILMF) is developed, based on statistical analyses of geometrically necessary dislocation (GND) densities and total dislocation densities estimated from EBSD and nanoindentation data, respectively. It is applied to a single phase ferritic Al-killed steel, which plastically deforms with the occurrence of heterogeneous intra-granular fields. During tensile tests up to 18 % of overall plastic strain, the deformation maps of GND densities due to intra-granular plastic strain gradients are obtained together with nano-hardness maps. The Nye tensor (or dislocation density tensor) is calculated from the 2D EBSD orientations to estimate the intragranular GND density, while a mechanistic model is used to estimate the intragranular total dislocation density from nano-hardness measurements. These data are quantified as a function of the distance to grain boundaries (GBs) to study the development of such plastic strain gradients in the vicinity of GBs. The novel methodology lies in extracting the evolution law of a single plasticity-induced internal length, denoted <span><math><mi>λ</mi></math></span>, from the statistical analysis of GND and total dislocation densities spatial distribution. Hence, it is introduced as an evolving variable in an elastoviscoplastic self-consistent model (EVPSC) for a two-phase composite as a new internal mean field (ILMF) approach. Both experimentally quantified microstructural internal lengths defined by the mean grain size and the evolving layer <span><math><mi>λ</mi></math></span>, are considered to more realistically describe the macroscopic and phase response in terms of stress, GND density evolution and total dislocation density in each phase. An experiment/model comparison is also discussed regarding GND density evolution with plastic deformation.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"189 ","pages":"Article 104327"},"PeriodicalIF":9.4,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143813918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kushagra Tiwari , Aayush Trivedi , G. Bharat Reddy , Bhupendra K. Kumawat , Akhil Bhardwaj , R.K. Singh Raman , Rhys Jones , Alankar Alankar
{"title":"Crystal plasticity modeling and data-driven approach for fatigue life estimation of additively manufactured Ti-6Al-4V alloy","authors":"Kushagra Tiwari , Aayush Trivedi , G. Bharat Reddy , Bhupendra K. Kumawat , Akhil Bhardwaj , R.K. Singh Raman , Rhys Jones , Alankar Alankar","doi":"10.1016/j.ijplas.2025.104319","DOIUrl":"10.1016/j.ijplas.2025.104319","url":null,"abstract":"<div><div>The limited use of additively manufactured Ti-6Al-4V (AM Ti64) alloy in critical load–bearing applications stems from an incomplete understanding of its fatigue behavior, the underlying causes and mechanisms, and the absence of reliable predictive modeling. This study aims to bridge this gap by attempting to aid a microstructure–sensitive modeling with the number of cycles to failure. Low cycle fatigue (LCF) tests are performed to failure at room temperature with five different strain amplitudes, with cyclic softening noted in all tests. A crystal plasticity model is developed and used for analyzing the fatigue indicator parameters (FIPs). Synthetic microstructures that statistically resemble the experimentally observed microstructure obtained using Electron Backscatter Diffraction (EBSD), are used. Grain-averaged and Band-averaged Fatemi–Socie FIPs are employed to evaluate the likelihood of crack initiation. These FIPs are derived from the output of CPFE model and volume-averaged for each strain amplitude. Following the elastic–plastic shakedown, the highest 5% of volume-averaged FIPs are analyzed using a Gumbel extreme value distribution. A Bayesian inference approach is used to associate the Gumbel distribution’s characteristics of FIPs with fatigue life, demonstrating a strong correlation with the experimental data on fatigue life. This work shows that a consistent correlation between FIPs and the number of cycles to failure can be established, offering a predictive tool for fatigue life assessment.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"189 ","pages":"Article 104319"},"PeriodicalIF":9.4,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143806251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
X.Y. Sheng , Z.X. Shang , Y.F. Zhang , K. Xu , N.A. Richter , A.Y. Shang , H. Wang , X. Zhang
{"title":"Ultra-high strength, deformable nanocrystalline Al-Pd alloys","authors":"X.Y. Sheng , Z.X. Shang , Y.F. Zhang , K. Xu , N.A. Richter , A.Y. Shang , H. Wang , X. Zhang","doi":"10.1016/j.ijplas.2025.104330","DOIUrl":"10.1016/j.ijplas.2025.104330","url":null,"abstract":"<div><div>Strengthening of aluminum (Al) alloys is commonly achieved through precipitation by ageing. However, achieving well dispersed fine precipitates requires a meticulous heat treatment schedule. Here we report sputter-deposited nanocrystalline Al-Pd alloy with nanolaminates, mimicking the structure of vertically aligned nanocomposite (VAN). The nanolaminate consists of alternating Al-Pd solid solution and Al<sub>4</sub>Pd intermetallic phase. The periodic composition fluctuation suggests the occurrence of spinodal decomposition. The Al-12.4Pd alloy exhibits a high flow stress of 2.2 GPa with significant work hardening ability, as evidenced by <em>in situ</em> micropillar compression tests performed in a scanning electron microscope. The unique VAN structure induced strengthening and deformation mechanisms are discussed. This study offers a fresh perspective for the design of high-strength deformable Al alloys.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"189 ","pages":"Article 104330"},"PeriodicalIF":9.4,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143806250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mingyu Lei , Jie Huang , Yanxian Li , Liqiang Zhang , Guochun Yang , Bin Wen
{"title":"High-strain-rate mechanical constitutive modeling with computational parameters","authors":"Mingyu Lei , Jie Huang , Yanxian Li , Liqiang Zhang , Guochun Yang , Bin Wen","doi":"10.1016/j.ijplas.2025.104329","DOIUrl":"10.1016/j.ijplas.2025.104329","url":null,"abstract":"<div><div>Mechanical constitutive relationships characterize the strain response of materials under external loading, laying the foundation for optimizing material performance and guiding engineering design. However, existing modeling methods for mechanical constitutive relationships, especially for high strain rate (HSR) loading, often rely on fitted experimental data and fail to comprehensively capture the underlying physical mechanisms. In this work, we propose a mechanical constitutive modeling with computational parameters (MCMCP) method suitable for HSR loading conditions, which establishes a quantitative link between the microstructure of materials and their macroscopic mechanical properties by fully integrating fundamental physical principles. This method couples the thermally activated dislocation unpinning mechanism with the phonon drag effect to accurately describe dislocation velocity and the influence of strain rate on plastic behavior. Additionally, a multi-mechanism coordinated strength-solving framework is introduced. It predicts the slip-twinning transition and quantitatively evaluates the contributions of various strengthening mechanisms. By incorporating microstructural evolution information, the material’s flow stress-strain response can also be predicted. Validation against simulations of pure metals and alloys confirms the effectiveness of the proposed method. This work not only enhances the understanding of micro-scale physical mechanisms for mechanical behavior but also provides a practical tool for predicting the mechanical properties under HSR loading.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"189 ","pages":"Article 104329"},"PeriodicalIF":9.4,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143806252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gangting Wang , Sangyu Luo , Yansong Guo , Ruizhe Huang , Chenguang Wang , Zhaoliang Qu
{"title":"Investigating the correlation between mechanical properties and gradient microstructures in laser shock peened CrCoNi alloy","authors":"Gangting Wang , Sangyu Luo , Yansong Guo , Ruizhe Huang , Chenguang Wang , Zhaoliang Qu","doi":"10.1016/j.ijplas.2025.104331","DOIUrl":"10.1016/j.ijplas.2025.104331","url":null,"abstract":"<div><div>In this study, laser shock processing (LSP) was used to enhance the mechanical properties of CrCoNi medium-entropy alloys (MEAs) by introducing the gradient microstructures (GS) within the material. Extensive microstructural characterizations confirmed a progressive distribution of nanocrystalline grains, dislocations, and deformation twins along the material's depth. Quantitative measurements of microstructural parameters at varying depths were conducted. Near the surface, the predominant microstructural evolutions were high dislocation density, twins, and grain refinement. At deeper regions, the key behaviors were nanoscale grain refinement and twin collisions. Nanoindentation and micro-pillar compression tests were employed to characterize the hardness distribution and mechanical properties at the microscale. It was found that LSP significantly improved hardness and yield strength. A quantitative relationship between GS and mechanical properties was developed, with theoretical calculations showing good agreement with experimental results. The contributions of different microstructural evolutions to hardness were individually assessed, revealing that multi-stage twins and grain refinement were the primary strengthening factors after one and ten impacts, respectively.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"189 ","pages":"Article 104331"},"PeriodicalIF":9.4,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143806249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}