{"title":"Operative slip systems and their critical resolved shear stresses in η-Fe2Al5 investigated by micropillar compression at room temperature","authors":"Zhenghao Chen, Tsukasa Horie, Xiaofeng Wang, Haruyuki Inui","doi":"10.1016/j.ijplas.2024.104057","DOIUrl":"10.1016/j.ijplas.2024.104057","url":null,"abstract":"<div><p>The plastic deformation behavior of single crystals of orthorhombic η-Fe<sub>2</sub>Al<sub>5</sub> has been investigated by micropillar compression at room temperature as a function of crystal orientation and specimen size. Plastic flow is observed even at room temperature by the operation of six slip systems; (001)<010>, (001)<110>, (001)<130>, {<span><math><mrow><mn>2</mn><mover><mrow><mn>2</mn></mrow><mo>‾</mo></mover><mn>3</mn></mrow></math></span>}<110>, {311}<<span><math><mrow><mover><mrow><mn>1</mn></mrow><mo>‾</mo></mover><mn>03</mn></mrow></math></span>> and {301}<<span><math><mrow><mover><mrow><mn>1</mn></mrow><mo>‾</mo></mover><mn>03</mn></mrow></math></span>>. The CRSS values for the six identified slip systems are very high all in the range of 1.1∼1.5 GPa and do not vary much with specimen size. In the middle of the stereographic projection, the (001)<010>, (001)<110>, (001)<130> and {<span><math><mrow><mn>2</mn><mover><mrow><mn>2</mn></mrow><mo>‾</mo></mover><mn>3</mn></mrow></math></span>}[110] slip systems operate according to the relative Schmid factors with the similar CRSS values in the range of 1.08∼1.23 GPa. In orientations close to [001], the {311}<<span><math><mrow><mover><mrow><mn>1</mn></mrow><mo>‾</mo></mover><mn>03</mn></mrow></math></span>> slip system as well as the {301}<<span><math><mrow><mover><mrow><mn>1</mn></mrow><mo>‾</mo></mover><mn>03</mn></mrow></math></span>> slip system operate with a much higher CRSS values around 1.5 GPa, producing wavy slip traces due to the occurrence of frequent cross-slip among these slip planes. In orientations close to the [100]-[110]-[010] symmetry line, on the other hand, premature failure occurs without the operation of any slip systems, although, the Schmidt factor-wise, the {311}<<span><math><mrow><mover><mrow><mn>1</mn></mrow><mo>‾</mo></mover><mn>03</mn></mrow></math></span>> and {301}<<span><math><mrow><mover><mrow><mn>1</mn></mrow><mo>‾</mo></mover><mn>03</mn></mrow></math></span>> slip systems could operate. The selection of slip systems, their CRSS values and the possible dislocation dissociation modes are discussed based on the overlapped atomic volume that occurs during shear along the slip direction on the slip plane, taking into account the partial occupancies of Al atoms in the linear atomic chain along the orthorhombic <em>c</em>-axis direction.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"180 ","pages":"Article 104057"},"PeriodicalIF":9.4,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0749641924001840/pdfft?md5=0b27039057c73fbc2d398a544139fc25&pid=1-s2.0-S0749641924001840-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141618391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaochuan Sun , Kecheng Zhou , Chuhao Liu , Xiaodan Zhang , Huamiao Wang , Guoliang Wang , Linfa Peng
{"title":"A crystal plasticity based strain rate dependent model across an ultra-wide range","authors":"Xiaochuan Sun , Kecheng Zhou , Chuhao Liu , Xiaodan Zhang , Huamiao Wang , Guoliang Wang , Linfa Peng","doi":"10.1016/j.ijplas.2024.104056","DOIUrl":"10.1016/j.ijplas.2024.104056","url":null,"abstract":"<div><p>Numerous studies have investigated the strain rate sensitive behaviors of materials, consistently reporting enhanced stress values and increased dislocation density with rising strain rates. Behind these phenomena lies the intrinsic nature of dislocation activity. In this context, we introduce an analysis method within a crystal-plasticity (CP) framework, incorporating molecular dynamics insights for a comprehensive range of strain rates (7.5 × 10<sup>−5</sup>/s to 5 × 10<sup>7</sup>/s). This approach offers a refined understanding of strain rate sensitive behaviors, mainly influenced by dislocation movement laws and strain-rate-dependent saturation of dislocation density. We elucidate the impact of deformation loading conditions on Schmidt factors and active slip systems, which are also crucial for understanding variations in SRS. Ultimately, this study underscores the CP method's effectiveness in comprehensive SRS analysis, seamlessly integrating experimental observations with theoretical predictions for advanced material characterization.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"180 ","pages":"Article 104056"},"PeriodicalIF":9.4,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141702545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haiyang Wang , Gang Chen , Peng Zhang , Chuanjie Wang
{"title":"Revealing mechanism of ductility improvement of titanium thin sheet under normal stress at mesoscale from perspective of microstructure evolution","authors":"Haiyang Wang , Gang Chen , Peng Zhang , Chuanjie Wang","doi":"10.1016/j.ijplas.2024.104055","DOIUrl":"10.1016/j.ijplas.2024.104055","url":null,"abstract":"<div><p>Improving the formability of sheet metal is a constant challenge in microforming. In this study, applying normal stresses to the specimen surface is found to be an effective method for improving the ductility of pure titanium sheets. This case only occurs when the normal stress is higher than a critical value. By characterizing the microstructure, it is found that the normal stress induces a change in the deformation mechanism, which improves the work-hardening rate and the capacity for homogeneous deformation. The plastic deformation mechanism of pure titanium thin sheets undergoes a transformation from exclusively slip-based to a multi-mechanistic mode that couples slip, twinning, and FCC phase transformation. Normal stress exacerbate the deformation of surface grains and inhibit surface roughening. Moreover, normal stress activates deformation twins and FCC phase transformation by increasing the Schmid factor of the associated twin/slip systems. FCC phases and deformation twins contribute to enhancing the work-hardening rate through mechanisms such as the dynamic Hall-Petch effect, reorientation texture hardening, and dislocation substructure strengthening. Moreover, they enhance the material's ductility by providing additional deformation modes to accommodate strain. By virtue of the coordinated action of various deformation mechanisms, a more uniform distribution of thickness strain is achieved. It delays onset of plastic instability and enhances the formability of thin sheets. Considering the changes in dislocation density induced by different microstructures, a modified model is constructed. Based on the dislocation density and the surface layer model, this model predicts the flow stress size effect, as well as changes in flow stress and work hardening rate induced by normal stress due to microstructure transformation. This work provides a complete understanding of the mechanical property response and microstructure evolution under normal stress. It also gives a feasible solution for improving the formability of titanium thin sheet in microforming.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"180 ","pages":"Article 104055"},"PeriodicalIF":9.4,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141556795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of intergranular deformation incompatibility on stress state and fracture initiation at grain boundary: Experiments and crystal plasticity simulations","authors":"Jiawei Chen, Tsuyoshi Furushima","doi":"10.1016/j.ijplas.2024.104052","DOIUrl":"https://doi.org/10.1016/j.ijplas.2024.104052","url":null,"abstract":"<div><p>The heterogeneous deformation of polycrystalline metals inherently originates from the intergranular deformation incompatibility. This paper proposes physical parameters related to the crystal orientations, the Schmid factor of the most activated slip system, and the misorientation angle to characterize the deformation incompatibility between the adjacent grain couple. A comprehensive multiscale investigation is conducted to reveal the mechanism from intergranular deformation incompatibility to fracture initiation at grain boundaries. At the specimen scale, experimental and numerical uniaxial tensile tests are performed on smooth and pre-notched dog-bone specimens to achieve different loading paths on the materials. The heterogeneous fields of stress triaxiality explains the heterogeneous size of the dimples observed in fractography. At the grain scale, electron backscatter diffraction analysis is conducted to characterize the microstructural properties around the nucleated voids within the materials. Voids are captured at the grain boundaries with directions parallel to the loading direction and intergranular deformation incompatibility is characterized using the proposed parameters. Simulations on the plastic deformation of realistic microstructures are performed to clarify the phenomenon. The results reveal that the fluctuation in stress triaxiality at grain boundaries is ascribed to intergranular deformation incompatibility, leading to fracture initiation at these sites. The relationships between the proposed physical parameters of intergranular deformation incompatibility and fluctuation in stress triaxiality are summarized in all circumstances. Finally, the ductile damage at the grain scale is predicted by the Rice–Tracey model, and the results show that the effects of microstructures on heterogeneous plastic deformation and stress state can be well considered.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"180 ","pages":"Article 104052"},"PeriodicalIF":9.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0749641924001797/pdfft?md5=195c1a4fb0756cb0a7180218121acc8e&pid=1-s2.0-S0749641924001797-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141595375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ran Chen , Guisen Liu , Peidong Wu , Jian Wang , Lei Zhang , Yao Shen
{"title":"Slip-discreteness-corrected strain gradient crystal plasticity (SDC-SGCP) theory","authors":"Ran Chen , Guisen Liu , Peidong Wu , Jian Wang , Lei Zhang , Yao Shen","doi":"10.1016/j.ijplas.2024.104054","DOIUrl":"https://doi.org/10.1016/j.ijplas.2024.104054","url":null,"abstract":"<div><p>Strain gradient plasticity theory addresses the plastic strain gradient induced hardening by considering the internal stress and Taylor hardening associated with the geometrically necessary dislocations (GNDs). However, the continuum description of internal stress associated with GNDs is inaccurate due to the coarsening of discrete dislocations. Corrections are thus derived as the difference between the stresses produced by the continuous configuration and the discrete configuration. We further demonstrate the capability of this correction in effectively capturing the internal stress induced strengthening effect associated with GNDs, and elucidate that its role in strengthening is to homogenize the deformation and extend the influence of grain boundaries into the interior of grains within polycrystals. This capability to capture intragranular slip distribution is validated through the simulation of a polycrystalline tensile experiment. This work explains the limitations of classical crystal plasticity theory under high strain gradients and offers a straightforward yet robust slip discreteness correction to crystal plasticity with transparent input from dislocation theory, opening a new perspective for the connections between continuum crystal plasticity theory and dislocation theory.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"180 ","pages":"Article 104054"},"PeriodicalIF":9.4,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141539860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of dynamic strain ageing on flow stress and critical strain for jerky flow in Al-Mg alloys","authors":"Surajit Samanta, Jyoti Ranjan Sahoo, Sumeet Mishra","doi":"10.1016/j.ijplas.2024.104053","DOIUrl":"https://doi.org/10.1016/j.ijplas.2024.104053","url":null,"abstract":"<div><p>A comprehensive approach addressing the flow behavior and the critical strain for the initiation of serrations in Al-Mg alloys is developed in the present work. The basic premise of the approach is that the solute atmosphere influences the friction as well as the strain hardening component of the flow stress. The friction effect of the solute cloud is modeled by considering the interplay between the characteristic solute migration time and the dislocation waiting time according to the cross-core diffusion mechanism. The impact on strain hardening is modeled by considering the apparent strengthening of the forest dislocations because of formation of solute aggregates near the vicinity of dislocation junctions. The apparent forest strengthening effect scales as the square root of the ratio of solute concentration in vicinity of the dislocation junctions and the bulk solute concentration. The modified constitutive model is validated against experimental flow curves obtained for strain rates varying over several orders of magnitude. It was observed that the modified constitutive model outperforms the standard constitutive model (considers only the friction effect of solute atmosphere) in predicting the flow curves in the dynamic strain aging domain. Furthermore, the modified constitutive model also accurately predicts the critical strain for the initiation of the jerky flow in both the normal and inverse regimes of the critical strain versus strain rate curve. Additional validation of the modified constitutive model is provided by dislocation character and density measurements via X-ray diffractograms, dislocation structure investigation via transmission electron microscopy along with fracture surface analysis.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"180 ","pages":"Article 104053"},"PeriodicalIF":9.4,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141539859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiang Zhang , Shao-Shi Rui , Xianfeng Ma , Ligang Song , Fei Zhu , Yaowu Pei , Jiaxin Wu
{"title":"Unveiling the deformation micro-mechanism for mechanical anisotropy of a CoCrFeNi medium entropy alloy","authors":"Qiang Zhang , Shao-Shi Rui , Xianfeng Ma , Ligang Song , Fei Zhu , Yaowu Pei , Jiaxin Wu","doi":"10.1016/j.ijplas.2024.104051","DOIUrl":"https://doi.org/10.1016/j.ijplas.2024.104051","url":null,"abstract":"<div><p>The equiatomic Cr-Co-Fe-Ni medium-entropy alloy has the face-centered cubic structure. Single crystals of this alloy were tested by in-situ micropillar compression along different loading axes under scanning electron microscope. The transmission electron microscopy characterization and molecular dynamics simulation were incorporated for quantitative analysis of the effects of different crystal orientations on the deformation mechanisms. The <001>-oriented pillar not only exhibited extensive deformation-induced nano twinning, but also has been identified for the first time to undergo the FCC<img>HCP phase transformation at room temperature. The strain localization tendency of <011>-oriented samples was confirmed through uniaxial tests to interpret the significant serration on stress-strain curves. The prominent strain hardening of <111>-oriented pillars was attributed to intense intersection between slip planes as evidenced by the extra density of Lomer-Cottrell locks. Such a high hardening rate has caused subsequent kinking of pillars. Functional division of different regions of kink band was conducted based on Orowan model. In principle, multi-principal element alloys can theoretically be designed and developed to combine a variety of excellent properties, which is an important class of candidate structural materials for advanced engineering systems. These findings provide promising guidance for understanding the mechanical anisotropy and application of these alloys.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"180 ","pages":"Article 104051"},"PeriodicalIF":9.4,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141595373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J.G. Lopes , J. Shen , E. Maawad , P. Agrawal , N. Schell , R.S. Mishra , J.P. Oliveira
{"title":"Time-resolved evolution of the deformation mechanisms in a TRIP/TWIP Fe50Mn30Co10Cr10 high entropy during tensile loading probed with synchrotron X-ray diffraction","authors":"J.G. Lopes , J. Shen , E. Maawad , P. Agrawal , N. Schell , R.S. Mishra , J.P. Oliveira","doi":"10.1016/j.ijplas.2024.104048","DOIUrl":"https://doi.org/10.1016/j.ijplas.2024.104048","url":null,"abstract":"<div><p>The present research focuses on analyzing the deformation mechanisms associated with tensile loading of the Fe<sub>50</sub>Mn<sub>30</sub>Co<sub>10</sub>Cr<sub>10</sub> high entropy alloy (HEA) using synchrotron x-ray diffraction (SXRD). This novel material is comprised by two major phases: γ-FCC and ε-HCP, where transformation induced plasticity (TRIP) effectively transforms the first into the latter, upon the application of an external stress. However, the presence of thermally stable ε-HCP prior to loading will also influence the deformation mechanism of the material during mechanical solicitation. As such, here we investigate the activation of different strain accommodation mechanisms and the consequent microstructural evolution. Four stages were identified in the mechanical response of this novel HEA, where the TRIP and the twinning induced plasticity (TWIP) deformation modes are the main events granting this HEA its outstanding properties. Such sequence of events allows to evidence the effectiveness of the collaboration between the transformative capability of the γ-FCC phase and the work hardening potential of the ε-HCP phase. This analysis is performed via quantitative and qualitative analysis of the SXRD data, allowing also to investigate the response behavior of specific crystallographic planes to the increasing stress throughout the experiment.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"179 ","pages":"Article 104048"},"PeriodicalIF":9.4,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S074964192400175X/pdfft?md5=6203ebe027550cbd4e9eef23825f431e&pid=1-s2.0-S074964192400175X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141484427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamic mechanical response and constitutive model of (Ti37.31Zr22.75Be26.39Al4.55Cu9)94Co6 high-entropy bulk metallic glass","authors":"Xianzhe Zhong , Qingming Zhang , Mingzhen Ma , Jing Xie , Mingze Wu , Jiankang Ren","doi":"10.1016/j.ijplas.2024.104047","DOIUrl":"https://doi.org/10.1016/j.ijplas.2024.104047","url":null,"abstract":"<div><p>In this work, the mechanical response and fracture characteristics of (Ti<sub>37.31</sub>Zr<sub>22.75</sub>Be<sub>26.39</sub>Al<sub>4.55</sub>Cu<sub>9</sub>)<sub>94</sub>Co<sub>6</sub> high-entropy bulk metallic glass (HE-BMG) were investigated in detail over a wide range of strain rates (10<sup>−4</sup>–10<sup>5</sup> s<sup>−1</sup>). The HE-BMG exhibited a negative strain rate sensitivity under uniaxial compression, with the strength showing more significant rate dependence under dynamic conditions. The shear band behavior translated from the dominance of multiple shear bands propagations under quasi-static compression to the rapid propagation of a single shear band to form cracks under dynamic compression. Under dynamic loading, the shearing velocity increased along an arc-shaped displacement path, and the local stress state on the shear fracture surface shifted from compressive-shear to tensile-shear, accompanied by changes in fracture morphologies. The spall strength of HE-BMG decreased as flyer impact speed increased, while the long-term dependence of spall strength on strain rate may be positive. With the increase of impact speed, the main microstructural features of the spalling surface translated from flat regions accompanied by dimples to cup-cone structures. Furthermore, the complete parameters of the Johnson–Holmquist II (JH-2) model for HE-BMG were obtained based on experimental data. Numerical simulations of planar impact, penetration, and hypervelocity impact are in good agreement with experimental results, demonstrating the validity of the JH-2 model parameters. The current work has important guiding value for the application of HE-BMG in space debris protection.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"179 ","pages":"Article 104047"},"PeriodicalIF":9.4,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141541752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yinuo Guo , Haijun Su , Hongliang Gao , Zhonglin Shen , Peixin Yang , Yuan Liu , Di Zhao , Zhuo Zhang , Min Guo , Xipeng Tan
{"title":"Microstructural origins of enhanced work hardening and ductility in laser powder-bed fusion 3D-printed AlCoCrFeNi2.1 eutectic high-entropy alloys","authors":"Yinuo Guo , Haijun Su , Hongliang Gao , Zhonglin Shen , Peixin Yang , Yuan Liu , Di Zhao , Zhuo Zhang , Min Guo , Xipeng Tan","doi":"10.1016/j.ijplas.2024.104050","DOIUrl":"10.1016/j.ijplas.2024.104050","url":null,"abstract":"<div><p>Limited tensile ductility usually restricts the practical applications of new classes of high-strength materials in many industrial fields. Therefore, in-depth understanding of the work hardening behavior and its underlying plastic deformation mechanism are critical for the newly developed high-entropy alloys (HEAs). In this work, a geometric atomistic model of face-centered cubic (FCC)/ordered body-centered cubic (BCC (B2)) interfaces and the evolution of dislocation substructures have been investigated to explore the microstructural origins of work hardening responses for two additively manufactured AlCoCrFeNi<sub>2.1</sub> eutectic high-entropy alloys (EHEAs) with the respective lamellar and cellular microstructures. Unlike the lamellar interphase interfaces with the most classical Kurdjumov-Sachs (KS) FCC-BCC relationship of <span><math><mrow><msub><mrow><mo>{</mo><mn>111</mn><mo>}</mo></mrow><mtext>FCC</mtext></msub><mrow><mo>∥</mo><msub><mrow><mo>{</mo><mn>110</mn><mo>}</mo></mrow><mrow><mi>B</mi><mn>2</mn></mrow></msub><mspace></mspace><msub><mrow><mo>〈</mo><mrow><mn>011</mn><mo>〉</mo></mrow></mrow><mtext>FCC</mtext></msub><mo>∥</mo></mrow><msub><mrow><mo>〈</mo><mrow><mn>111</mn><mo>〉</mo></mrow></mrow><mrow><mi>B</mi><mn>2</mn></mrow></msub></mrow></math></span>, the Nishiyama-Wassermann (NW) relationship, namely <span><math><mrow><msub><mrow><mo>{</mo><mn>111</mn><mo>}</mo></mrow><mtext>FCC</mtext></msub><mrow><mo>∥</mo><msub><mrow><mo>{</mo><mn>110</mn><mo>}</mo></mrow><mrow><mi>B</mi><mn>2</mn></mrow></msub><mspace></mspace><mspace></mspace><msub><mrow><mo>〈</mo><mrow><mn>011</mn><mo>〉</mo></mrow></mrow><mtext>FCC</mtext></msub><mo>∥</mo></mrow><msub><mrow><mo>〈</mo><mrow><mn>001</mn><mo>〉</mo></mrow></mrow><mrow><mi>B</mi><mn>2</mn></mrow></msub></mrow></math></span>, is observed to be dominant on the cellular interphase interfaces. Furthermore, our intermittent high-resolution transmission electron microscopy (HR-TEM) results directly show that the deformation of lamellar AlCoCrFeNi<sub>2.1</sub> alloy first proceeds with massive stacking faults (SFs) and then dislocation walls developed across phases interfaces, due to the effective dislocation transfer capability of lamellar boundaries. The large uniform elongation of the cellular AlCoCrFeNi<sub>2.1</sub> alloy is attributed to the stable and progressive strain-hardening mechanism that is stemmed from the activated multiple slip systems, deformation-induced SF networks, and the associated Lomer-Cottrell locks in the middle and later stages of plastic deformation. Moreover, the nano-bridging of FCC cells in the 3D-printed microstructure provides unique channels for dislocation movement, which offsets the “blocking effect” of cellular boundaries and thus suppresses the pre-mature fracture.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"179 ","pages":"Article 104050"},"PeriodicalIF":9.4,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141464177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}