Biaobiao Wang, Li Liu, Yao Lu, Zhao Lei, Liang Zhen
{"title":"通过Mn偏析引起的分层,显著提高了高强度钢从室温到低温的冲击韧性","authors":"Biaobiao Wang, Li Liu, Yao Lu, Zhao Lei, Liang Zhen","doi":"10.1016/j.ijplas.2025.104420","DOIUrl":null,"url":null,"abstract":"Mn segregation is an inevitable microstructural characteristic in medium/high Mn steels and generally deteriorates mechanical performance. Instead of eliminating Mn segregation, the present work firstly develops a high-strength medium Mn steel with obviously improved impact toughness at a wide temperature range between ambient and cryogenic temperatures by artificially introducing Mn segregated bands to initiate delamination toughening. By combining warm rolling and intercritical annealing, the heterostructure containing elongated Mn-rich austenite bands with a width of ∼7.6 μm and submicron austenite/ferrite matrix was realized. The coarse austenite bands featuring limited mechanical stability preferentially undergo transformation-induced plasticity (TRIP) effect upon deformation, inducing brittle TRIP-martensite with abundant C/Mn contents. These TRIP-martensite parallel to the rolling direction encourage the activation of delamination mechanically and microstructurally by serving as the initiation sites and propagation paths for delamination cracks, making brittleness into toughening. The presence of intensive through-thickness delamination cracks regulates the stress state around the main crack tip, consumes energy through the formation of new surfaces, and activates additional TRIP effects around delamination cracks. The pronounced delamination toughening was realized at ∼ -100°C, benefiting from an abnormal enhancement of impact toughness at even low temperatures. The sustainable TRIP effect provided by austenite grains with distinct morphology, size, and composition further improves toughness intrinsically. Formation of Mn-rich bands furthermore relieves the segregation of Mn to prior austenite grain boundaries (PAGBs), avoiding intergranular fracture that is usually observed in medium Mn steel. This novel toughening mechanism paves the way for developing high-strength material with enhanced toughness at ambient and low temperatures.","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"16 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Significantly enhanced impact toughness from ambient to cryogenic temperature in high-strength steel via Mn segregation induced delamination\",\"authors\":\"Biaobiao Wang, Li Liu, Yao Lu, Zhao Lei, Liang Zhen\",\"doi\":\"10.1016/j.ijplas.2025.104420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mn segregation is an inevitable microstructural characteristic in medium/high Mn steels and generally deteriorates mechanical performance. Instead of eliminating Mn segregation, the present work firstly develops a high-strength medium Mn steel with obviously improved impact toughness at a wide temperature range between ambient and cryogenic temperatures by artificially introducing Mn segregated bands to initiate delamination toughening. By combining warm rolling and intercritical annealing, the heterostructure containing elongated Mn-rich austenite bands with a width of ∼7.6 μm and submicron austenite/ferrite matrix was realized. The coarse austenite bands featuring limited mechanical stability preferentially undergo transformation-induced plasticity (TRIP) effect upon deformation, inducing brittle TRIP-martensite with abundant C/Mn contents. These TRIP-martensite parallel to the rolling direction encourage the activation of delamination mechanically and microstructurally by serving as the initiation sites and propagation paths for delamination cracks, making brittleness into toughening. The presence of intensive through-thickness delamination cracks regulates the stress state around the main crack tip, consumes energy through the formation of new surfaces, and activates additional TRIP effects around delamination cracks. The pronounced delamination toughening was realized at ∼ -100°C, benefiting from an abnormal enhancement of impact toughness at even low temperatures. The sustainable TRIP effect provided by austenite grains with distinct morphology, size, and composition further improves toughness intrinsically. Formation of Mn-rich bands furthermore relieves the segregation of Mn to prior austenite grain boundaries (PAGBs), avoiding intergranular fracture that is usually observed in medium Mn steel. This novel toughening mechanism paves the way for developing high-strength material with enhanced toughness at ambient and low temperatures.\",\"PeriodicalId\":340,\"journal\":{\"name\":\"International Journal of Plasticity\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Plasticity\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijplas.2025.104420\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijplas.2025.104420","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Significantly enhanced impact toughness from ambient to cryogenic temperature in high-strength steel via Mn segregation induced delamination
Mn segregation is an inevitable microstructural characteristic in medium/high Mn steels and generally deteriorates mechanical performance. Instead of eliminating Mn segregation, the present work firstly develops a high-strength medium Mn steel with obviously improved impact toughness at a wide temperature range between ambient and cryogenic temperatures by artificially introducing Mn segregated bands to initiate delamination toughening. By combining warm rolling and intercritical annealing, the heterostructure containing elongated Mn-rich austenite bands with a width of ∼7.6 μm and submicron austenite/ferrite matrix was realized. The coarse austenite bands featuring limited mechanical stability preferentially undergo transformation-induced plasticity (TRIP) effect upon deformation, inducing brittle TRIP-martensite with abundant C/Mn contents. These TRIP-martensite parallel to the rolling direction encourage the activation of delamination mechanically and microstructurally by serving as the initiation sites and propagation paths for delamination cracks, making brittleness into toughening. The presence of intensive through-thickness delamination cracks regulates the stress state around the main crack tip, consumes energy through the formation of new surfaces, and activates additional TRIP effects around delamination cracks. The pronounced delamination toughening was realized at ∼ -100°C, benefiting from an abnormal enhancement of impact toughness at even low temperatures. The sustainable TRIP effect provided by austenite grains with distinct morphology, size, and composition further improves toughness intrinsically. Formation of Mn-rich bands furthermore relieves the segregation of Mn to prior austenite grain boundaries (PAGBs), avoiding intergranular fracture that is usually observed in medium Mn steel. This novel toughening mechanism paves the way for developing high-strength material with enhanced toughness at ambient and low temperatures.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.