{"title":"Cajanus cajan: a promissory high-nitrogen fixing cover crop for Uruguay","authors":"Verónica Berriel, C. Perdomo","doi":"10.3389/fagro.2023.1214811","DOIUrl":"https://doi.org/10.3389/fagro.2023.1214811","url":null,"abstract":"Cover crops can increase agricultural sustainability by protecting soil from erosion, increasing biodiversity, and symbiotically incorporating fixed nitrogen (N) into the soil. Nowadays, however, in Uruguay mostly grasses are planted in autumn to protect the soil from erosion. Another option is to study tropical legumes’ performance as cover crops, which can fix substantial amounts of nitrogen in short growing periods, thereby bridging the knowledge gap in Uruguayan agriculture. The main objective was to evaluate and compare the performance of six tropical legumes (Crotalaria juncea, Crotalaria spectabilis, Crotalaria ochroleuca, Cajanus cajan, Dolichos lablab, Mucuna pruriens) and the temperate legume Glycine max. The evaluation focused on aboveground biomass and the N mass derived from fixation (NmdFix), as well as other attributes; three field experiments were conducted on a southern Uruguay farm during the summers of 2017, 2018, and 2019. The growing cycle lengths for the cover crops in 2017, 2018, and 2019 were 117, 130, and 90 days, respectively. The results showed that when planting was done at late December (2017 and 2018 growing cycles), the species with the highest mean biomass yield were Crotalaria juncea (two year average 12.0 Mg ha-1) and Cajanus cajan (11.0 Mg ha-1), but Cajanus cajan (149 kg ha-1) more than doubled the NmdFix mass of Crotalaria juncea (57 kg ha-1). In 2018 biomass yields were much higher than in 2017, with Glycine max (20.0 Mg ha-1) yielding at a similar level to Crotalaria juncea and Cajanus cajan (20.5 and 18.7 Mg ha-1, respectively). Amounts of NmdFix, however, were much higher in Glycine max and Cajanus cajan (263 and 253 kg N ha-1, respectively), than in Crotalaria juncea (91 kg N ha-1). In 2019 planting had to be delayed until early February and only Glycine max maintained acceptable biomass and NmdFix levels. In conclusion, based on its fixing N potential, for late December sowings Cajanus cajan and Glycine max would be the most promising species for cover crop use, while for late January or early February sowings, only Glycine max would an option because the tropical species seriously impaired their productivity when grew longer into the cooler autumn temperatures.","PeriodicalId":34038,"journal":{"name":"Frontiers in Agronomy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47390539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Maluk, M. Giles, G. Wardell, Aminin Taqrir Akramin, Francesc Ferrando-Molina, Ashley Murdoch, Marta Barros, C. Beukes, M. Vasconcelos, Ellie Harrison, T. Daniell, R. Quilliam, P. Iannetta, E. James
{"title":"Biological nitrogen fixation by soybean (Glycine max [L.] Merr.), a novel, high protein crop in Scotland, requires inoculation with non-native bradyrhizobia","authors":"M. Maluk, M. Giles, G. Wardell, Aminin Taqrir Akramin, Francesc Ferrando-Molina, Ashley Murdoch, Marta Barros, C. Beukes, M. Vasconcelos, Ellie Harrison, T. Daniell, R. Quilliam, P. Iannetta, E. James","doi":"10.3389/fagro.2023.1196873","DOIUrl":"https://doi.org/10.3389/fagro.2023.1196873","url":null,"abstract":"It is currently not recommended to grow soybean (Glycine max [L.] Merr.) further than 54° North, but climate change and the development of new high latitude-adapted varieties raises the possibility that it could be introduced into Scotland as a novel high protein crop deriving most of its nitrogen (N) requirements through biological N fixation (BNF). This was evaluated via field trials in 2017 and 2018 near Dundee (56.48°N). As there are no native soybean-nodulating bacteria (SNB) in UK soils, soybean requires inoculation to exploit its BNF potential. In 2017, three commercial inoculants containing elite Bradyrhizobium strains significantly increased plant biomass in plot trials with a soybean 000 maturity group variety (ES Comandor). Rhizobia were isolated from the nodules and identified as the original inoculant species, B. diazoefficiens and B. japonicum. One inoculant (Rizoliq Top) was used for larger-scale trials in 2018 with two varieties (ES Comandor, ES Navigator); inoculation doubled the grain yield to 1 t ha-1 compared to the uninoculated crop. The inoculated soybean obtained most of its N through BNF in both years regardless of plant genotype i.e. >73%Ndfa, with BNF contributions to aerial biomass exceeding 250 kg N ha-1 yr-1 in 2017 and that to grain 50 kg N ha-1 yr-1 in 2018. These data suggest that N-fixing soybean could be grown in Scotland without mineral N-fertiliser, either for forage as animal feed, or as green pods for human consumption (“edamame”), and potentially, even as dry grain. The potential for survival of the Bradyrhizobium inoculant strains in soils was also demonstrated through the detection of the inoculant strain B. diazoefficiens SEMIA 5080 at relatively high populations (104 g-1 dry soil) using a qRT-PCR method with SNB-specific nodZ primers. Microbiome data obtained from soil using 16S rRNA primers demonstrated that the diversity of bacteria belonging to the genus Bradyrhizobium increased in soybean-cropped soils compared to bulk soil regardless of inoculation status. The economic and practical implications of residual inoculum, as well as those arising from introducing a non-native plant and alien bacteria into Scottish soils in terms of their impact on the native soil microbiota are discussed.","PeriodicalId":34038,"journal":{"name":"Frontiers in Agronomy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47808682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Enesi, M. Dyck, Scott X. Chang, M. Thilakarathna, Xiaoli Fan, S. Strelkov, L. Gorim
{"title":"Liming remediates soil acidity and improves crop yield and profitability - a meta-analysis","authors":"R. Enesi, M. Dyck, Scott X. Chang, M. Thilakarathna, Xiaoli Fan, S. Strelkov, L. Gorim","doi":"10.3389/fagro.2023.1194896","DOIUrl":"https://doi.org/10.3389/fagro.2023.1194896","url":null,"abstract":"Soil acidity reduces base cations required for plant growth and may result in phytotoxic concentrations of soluble aluminum. Liming acidic soils is generally promoted as an effective management practice to increase soil pH, base cation concentrations, and ameliorate toxicity caused by aluminum and manganese. Through a global literature review using data published from field experiments on liming, the objective of this paper is to understand the effects of liming on soil pH, crop yields, and economic profitability. The results show that liming positively influenced crop yields and soil pH, implying that various lime sources can increase soil pH and crop productivity. The effect sizes of liming on crop yields when lime was incorporated into soils were higher than surface application irrespective of tillage practice. Liming under no-tillage (NT) compared to conventional tillage (CT) management showed higher effect sizes for crop yields. Liming increased effect sizes for crop yields in fertilized compared with unfertilized trials. Gypsum, calcium hydroxide and calcium carbonate showed higher effect sizes when compared with Cement Klin Dust (CKD), dolomite and wood ash. The results show that liming increased yields for all crops except potatoes and oats. Liming generally increases soil pH and changes in soil pH increased with higher lime application rates and yield increases were proportional to the magnitude of increases in soil pH. The profitability of liming differed with crop type and liming rate, being more profitable at lower liming rates. Overall, this meta-analysis shows that liming decreases soil acidity and improves crop yields. Attaining maximum gains from liming agricultural crops under acidic soil conditions requires an understanding of the appropriate lime rates required for specific crops and soil types to ensure overall profitability for producers and sustainable improvement of soil health.","PeriodicalId":34038,"journal":{"name":"Frontiers in Agronomy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42224986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rahel Sutterlütti, Isabell König, Anita Swieter, M. Jansen
{"title":"Spatial distribution of tree and grassland fine roots in an alley cropping system","authors":"Rahel Sutterlütti, Isabell König, Anita Swieter, M. Jansen","doi":"10.3389/fagro.2023.1200785","DOIUrl":"https://doi.org/10.3389/fagro.2023.1200785","url":null,"abstract":"Alley cropping systems are known as more sustainable land use alternatives compared to monoculture cropland. In addition to the improvement of above-ground structures and creation of biotopes relevant to nature conservation, the improvement of resource development through various root systems plays a major role. We studied the interaction of the root systems in an alley cropping system combining permanent grassland and willows and at a reference grassland site. The system was established 12 years prior to our study on a site with a shallow groundwater table at 130 cm depth. We measured carbon stocks in the topsoil and determined the share of root-bound carbon relative to the total carbon pool and extracted soil cores up to a depth of 150 cm along a distance gradient to the trees and at a reference grassland site with no tree influence. The maximal rooting depth of the grassland roots increased with increasing distance to the tree lines and total root biomass was higher than under the grassland reference up to a distance of 2.5 m from the tree line. Tree roots extended up to a distance of 5.5 m from the trees and we could distinguish zones of tree root dominance very close to the trees, zones of grassland root dominance at distances ≥ 8.5 m and an interaction zone in between those two extremes. We conclude that alley cropping increases belowground biomass as compared to grassland and has therefore a higher potential to store carbon in the subsoil.","PeriodicalId":34038,"journal":{"name":"Frontiers in Agronomy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42404532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gengsheng Zhang, M. Leclerc, N. Singh, R. Tubbs, Walter Scott Montfort
{"title":"Influence of planting pattern on peanut ecosystem daytime net carbon uptake, evapotranspiration, and water-use efficiency using the eddy-covariance method","authors":"Gengsheng Zhang, M. Leclerc, N. Singh, R. Tubbs, Walter Scott Montfort","doi":"10.3389/fagro.2023.1204887","DOIUrl":"https://doi.org/10.3389/fagro.2023.1204887","url":null,"abstract":"Peanut is planted in a pattern of either single or twin rows in Georgia, USA. However, limited attention has been paid to the impact of planting pattern on the carbon footprint and how the net carbon uptake is intertwined with the amount of water used to determine the ecosystem water-use efficiency (WUE) in peanut. This paper reports on the relationship between the amount of carbon produced to the amount of water used in peanut, carbon dioxide flux, and crop evapotranspiration of peanut in a single- or in a twin-row planting pattern measured using the eddy-covariance method. To the best of our knowledge, the present study is unique in that it examines for the first time the effect of planting pattern on the net carbon uptake and WUE. The two-year study took place in contrasting weather conditions with the 2016 year experiencing a higher vapor pressure deficit and lower precipitation than in the 2018 year. In this study, field-scale daytime net carbon ecosystem exchange (CO2 fluxes), ET and WUE of single- and twin-row peanut were compared using the eddy-covariance technique. Results showed that in 2018, both the net carbon uptake from the atmosphere and the WUE of twin-row peanut were significantly greater than those in the single-row peanut by 7-10% and ~9% respectively, for pod filling and seed maturity growth stages (aGDD 1000-2000 and aGDD > 2000). In 2016, the net daytime carbon uptake and WUE of peanut were similar for both planting patterns during pod filling (aGDD 1000-2000). Higher precipitation and lower VPD in 2018 likely resulted in greater peanut yield in twin-row as compared to single-row with abundant precipitation. Owing to the fast canopy growth rate in twin-row peanut, results suggest that during the vegetative stage (aGDD<500) in 2016, both daytime net carbon uptake from the atmosphere and WUE were considerably greater in twin-row than single-row by 32% and 27%, respectively. Given that in both years, the ET from both planting patterns was similar, it appears that the determination of WUE in both planting patterns was more impacted by changes in daytime net carbon uptake than evapotranspiration. The results of this study suggest the possibility that the higher WUE at the critical stages of twin-row peanut in 2018 are likely to lead to greater yield than single-row peanut. This should be confirmed with further year-to-year investigations.","PeriodicalId":34038,"journal":{"name":"Frontiers in Agronomy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43212676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alice Ferreira, Carolina R V Bastos, Cláudia Marques-dos-Santos, F. G. Acién-Fernándéz, L. Gouveia
{"title":"Algaeculture for agriculture: from past to future","authors":"Alice Ferreira, Carolina R V Bastos, Cláudia Marques-dos-Santos, F. G. Acién-Fernándéz, L. Gouveia","doi":"10.3389/fagro.2023.1064041","DOIUrl":"https://doi.org/10.3389/fagro.2023.1064041","url":null,"abstract":"The continuous growth of the world population has imposed major challenges on agriculture. Consequently, farmers generalized the overuse of synthetic fertilizers and pesticides to meet the global food demand. Although these products have helped many developing countries increase their crop yield, they have simultaneously resulted in many issues, mainly the decline of soil fertility and degradation of local ecosystems due to soil, water, and air contamination, combined with their non-renewable nature and increased costs. For agriculture to become more sustainable, the use of alternative biological products, with recognized beneficial effects on plant yield and health, must be expanded. In this context, microalgae and cyanobacteria are rich sources of nutrients and bioactive metabolites, which have been gaining attention from researchers and companies for their ability to improve plant nutrition, growth, and tolerance to stress. This review gives an overview of the research work that has been done in the last two decades, regarding the use of microalgae and cyanobacteria (blue-green algae) as biofertilizers, biostimulants, and biopesticides. This work identified trends and challenges and highlights the use of microalgae to recycle the nutrients from wastewater to improve plant productivity while reducing the fertilizer and water footprint for more sustainable agriculture practices. Graphical Abstract","PeriodicalId":34038,"journal":{"name":"Frontiers in Agronomy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48978177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammed Ali Hossain, Fariha Tanjum Swarna, Rabeya Al Arabi, I. Hamim
{"title":"Trichoderma asperellum suppresses viral diseases and promotes the growth and yield of country bean","authors":"Muhammed Ali Hossain, Fariha Tanjum Swarna, Rabeya Al Arabi, I. Hamim","doi":"10.3389/fagro.2023.1150359","DOIUrl":"https://doi.org/10.3389/fagro.2023.1150359","url":null,"abstract":"Viral diseases are the main adversaries of country bean (Lablab purpureus Lin.) production in Bangladesh. Potyviruses and cucumber mosaic virus (CMV) have been reported in country bean leaves that displayed virus-like symptoms. This study looked at the growth and yield of country bean plants that had been treated with Trichoderma asperellum to control country bean viruses. T. asperellum-treated plants exhibited decreased disease incidence up to 91% and a drop in the vector population up to 96%, when compared to control plants. Plant growth was enhanced in soil drenched with T. asperellum suspension, with an increase in the number of leaves per plant, pods per plant, root length, weight of dried pods/plant, and weight of dried seeds/plant. Finally, our findings suggest that T. asperellum could be an effective treatment for controlling viral diseases of the country bean in Bangladesh.","PeriodicalId":34038,"journal":{"name":"Frontiers in Agronomy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42883698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tabata Raissa de Oliveira, Augusto Dubou Serafim, Brenton Breland, A. Miller, Karina Beneton, Varsha Singh, Worlanyo Segbefia, J. Argenta, S. Broderick, T. Tseng
{"title":"An integrated weed management approach in tomato using soil steaming, mulching, and winter cover crops","authors":"Tabata Raissa de Oliveira, Augusto Dubou Serafim, Brenton Breland, A. Miller, Karina Beneton, Varsha Singh, Worlanyo Segbefia, J. Argenta, S. Broderick, T. Tseng","doi":"10.3389/fagro.2023.1075726","DOIUrl":"https://doi.org/10.3389/fagro.2023.1075726","url":null,"abstract":"One of the most significant yield losses in tomato (Solanum lycopersicum L.) is due to weeds. Yellow and purple nutsedge, large crabgrass, and Palmer amaranth are the most troublesome weed species in tomato production throughout the southeastern United States. This study aimed to determine the impact of soil steaming, plastic mulching, and cover crops on weed suppression, tomato height, and fruit yield. The cover crops used were hairy vetch (Vicia villosa), crimson clover (Trifolium incarnatum), and cereal rye (Secale cereale). The study was conducted at the Mississippi State University Truck Crops Experiment Station in Crystal Springs, Mississippi, USA. The experiment used a completely randomized block design with three fall cover crop treatments, including fallow, and each was replicated three times and repeated in two years. Each plot was broadcasted with a mixture of yellow nutsedge (Cyperus esculentus L.), large crabgrass (Digitaria sanguinalis L.), barnyardgrass (Echinochloa crus-galli), and Palmer amaranth [Amaranthus palmeri (S.) Watson] at a density of 20 plants m-2 for each weed species. Two days after sowing the weed seeds, the soil surface was steamed according to its assigned treatment until it reached 61°C for either 0, 5, or 20 min. After steaming, drip irrigation tubing was laid on each row, and covered by black, 0.0254-mm plastic mulch. Data were recorded in both years, including weed cover, plant height, and fruit yield. The lowest weed cover was observed at 5 min of soil steaming in mulched treatment, and the highest cover was noted at 0 min of soil steaming in the absence of mulching. Yellow nutsedge was the dominant weed species, even under steam and mulch treatments. The use of cover crops did not show a difference compared to fallow treatments. However, hairy vetch showed the lowest weed cover, followed by crimson clover. Tomato plants in steamed soil were up to 13 cm taller than those in unsteamed soils. Additionally, steaming at 5 or 20 min in combination with plastic mulch increased the marketable and cull yield. Soil steaming and mulching increased tomato plant height and yield while decreasing weed population and can, therefore, be effectively incorporated into an integrated weed management program in tomato.","PeriodicalId":34038,"journal":{"name":"Frontiers in Agronomy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45706591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Suyal, Amir Khan, A. Singh, A. Agarwal, N. Pareek, Vinod Kumar Sah, R. Goel
{"title":"Impact assessment of cold-adapted Pseudomonas jesenii MP1 and Pseudomonas palleroniana N26 on Phaseolus vulgaris yield and soil health","authors":"D. Suyal, Amir Khan, A. Singh, A. Agarwal, N. Pareek, Vinod Kumar Sah, R. Goel","doi":"10.3389/fagro.2023.1121757","DOIUrl":"https://doi.org/10.3389/fagro.2023.1121757","url":null,"abstract":"The poor agriculture practices, fragmented land holdings, fluctuating climatic conditions, and minimal external inputs lead to nutrient deficiency in the Himalayan agroecosystems. Because of the risks associated with chemical fertilizers, their implication is a big question mark. Therefore, two previously characterized plant growth-promoting rhizobacteria Pseudomonas jesenii MP1 and Pseudomonas palleroniana N26 were employed to enhance kidney bean productivity and soil health at farmer’s fields of Harsil and Chakrata regions of Uttarakhand Himalayas. The study revealed that MP1 and N26 treatment resulted in 25.62% and 37.23% higher grain yield than respective uninoculated controls at the trial fields of Harsil and Chakrata regions, respectively. Further, the bacterial treatments have significantly increased nitrogen, phosphorus, and potassium levels in the soils. The soil diversity analysis revealed the dominance of Proteobacteria and Actinobacteria at Harsil and Chakrata, respectively. Further, the MP1 treatment had increased Firmicutes percentage over uninoculated control at both locations. Conclusively, the application of cold adaptive Pseudomonas jesenii MP1 and Pseudomonas palleroniana N26 improved the grain yield and soil health status of the Himalayan agroecosystems. Therefore, they can be explored as an eco-friendly alternative for the commercial production of kidney beans.","PeriodicalId":34038,"journal":{"name":"Frontiers in Agronomy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45362337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}