{"title":"An integrated planning framework for optimal power generation portfolio including frequency and reserve requirements","authors":"Olayinka Ayo, Paola Falugi, Goran Strbac","doi":"10.1049/esi2.12152","DOIUrl":"https://doi.org/10.1049/esi2.12152","url":null,"abstract":"<p>Electricity system decarbonisation poses several challenges to network stability and supply security, given renewables' intermittency and possible reduction of system inertia. This manuscript presents a novel integrated system framework to determine optimal generation investments for addressing decarbonisation challenges and achieving cost-effective electricity systems while ensuring frequency stability and reserve requirements are met at the operational level in a net-zero system. The novel planning framework is a mixed-integer bilinear programming problem accurately modelling clustered variables for the on/off status of generation units and seconds-timescale frequency requirements at an operational and planning level. The benefits of the decision framework and effects of dispatch decisions in a year are illustrated using the Great Britain case study. The results provide optimal trade-offs and cost-effective investment portfolios for including detailed modelling of unit-commitment and frequency stability constraints versus not including them in the planning model. Making investment decisions for a net-zero electricity system without these constraints can lead to very high system costs due to significant demand curtailment. Although the model's computation burden was increased by these constraints, complexity was managed by formulating them tightly and compactly. Non-convex quadratic nadir constraints were efficiently solvable to global optimality by applying McCormick relaxations and branching techniques in an advanced solver.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"6 4","pages":"545-564"},"PeriodicalIF":1.6,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12152","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143252812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Guest Editorial: Identification, stability analysis, control, and situation awareness of power systems with high penetrations of renewable energy resources","authors":"Tek Tjing Lie, Wenpeng Luan","doi":"10.1049/esi2.12153","DOIUrl":"https://doi.org/10.1049/esi2.12153","url":null,"abstract":"<p>It is with great pleasure that the authors introduce this special issue, commemorating the 8th Asia Conference on Power and Electrical Engineering held in Tianjin in 2023. This conference served as a nexus for researchers, practitioners, and industry experts from around the globe to convene and exchange cutting-edge insights, innovative ideas, and transformative advancements in the field of power and electrical engineering. The contributions featured in this special issue represent a diverse array of research endeavours, spanning from fundamental theories to practical applications, all aimed at addressing the myriad challenges and opportunities facing the power and electrical engineering domain. From novel methodologies in renewable energy integration to advancements in smart grid technologies, each article encapsulates the spirit of innovation and collaboration that characterised the conference. This special issue includes scientific investigations on topology modelling and virtual stability analysis methods for distribution networks with high penetration of renewable energy resources, monitoring and situation awareness on grid inertia and power-frequency evolution, novel voltage source converter control schemes, and reviews of low-carbon planning and operation of electricity, hydrogen fuel, and transportation networks.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"6 2","pages":"87-88"},"PeriodicalIF":2.4,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12153","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141424932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mir Toufikur Rahman, Mingchen Gu, Moudud Ahmed, Kazi N. Hasan, Lasantha Meegahapola
{"title":"Analysis of voltage limit-induced barrier for connecting inverter-based distributed generators to medium voltage networks: Australian case studies","authors":"Mir Toufikur Rahman, Mingchen Gu, Moudud Ahmed, Kazi N. Hasan, Lasantha Meegahapola","doi":"10.1049/esi2.12154","DOIUrl":"10.1049/esi2.12154","url":null,"abstract":"<p>Inverter-based distributed generators (IBDGs), mainly solar photovoltaic, connected in medium-voltage (MV) networks cause challenges, such as voltage limit violations, for distribution network service providers (DNSPs), and require advanced network management strategies to mitigate these challenges. A theoretical analysis of the voltage limit-induced barrier to IBDG connection and their export limits due to the change in network characteristics is imperative for developing new strategies. The authors formulated a relationship between the network equivalent impedance and the IBDG's connection point in the network and further explored the link between the network equivalent impedance and voltage magnitude due to the IBDG connection point. The authors also assessed the voltage limit-induced barrier to IBDG connections in MV networks and proposed solutions to overcome issues with the dynamic export limit of IBDGs. Four representative Australian MV networks are analysed in DIgSILENT PowerFactory under different scenarios, such as variation in IBDG location and static and dynamic export limits. The authors found that an IBDG connected at the end of the network can achieve better performance in supporting the network voltage. An IBDG with a dynamic export limit can export three times more energy than the static export limit, which benefits both the DNSPs and IBDG owners.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"6 4","pages":"565-580"},"PeriodicalIF":1.6,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12154","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141387964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Wang, Jianhang Zhu, Yingbiao Li, Jiabing Hu, Shicong Ma, Tiezhu Wang
{"title":"Transient overvoltage suppression of LCC-HVDC sending-end system based on DC current control optimisation","authors":"Yang Wang, Jianhang Zhu, Yingbiao Li, Jiabing Hu, Shicong Ma, Tiezhu Wang","doi":"10.1049/esi2.12150","DOIUrl":"10.1049/esi2.12150","url":null,"abstract":"<p>The receiving-end system AC fault of the line-commutated-converter-based high voltage direct current (LCC-HVDC) will lead to commutation failure of the inverter side. During the fault and its recovery, AC transient low voltage and transient overvoltage (TOV) will occur in the sending-end system. The TOV has the risk of triggering the disorderly off-grid of the nearby renewable power generations. Besides, in a serious situation, it will threaten the power system to maintain a secure and steady operation. Therefore, the authors analyse the mechanism involved in the AC transient voltage during the AC fault and the recovery period first. It reveals that the key factor causing the TOV of the sending-end system is the setting of the DC current reference value. Then, a DC current reference value limit method based on the AC TOV sampling value is proposed, which is used to accelerate DC current recovery and suppress the TOV of the sending-end system. Finally, the effectiveness of the designed control method has been confirmed through electromagnetic transient simulations using the CIGRE HVDC benchmark model and a ±800 kV HVDC transmission system model situated in Northwest China.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"6 2","pages":"182-195"},"PeriodicalIF":2.4,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12150","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140996973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stability assessment of inverter-based renewable energy sources integrated to weak grids","authors":"M. I. Saleem, S. Saha, U. Izhar, L. Ang","doi":"10.1049/esi2.12151","DOIUrl":"10.1049/esi2.12151","url":null,"abstract":"<p>The worldwide electricity network is undergoing a crucial transformation, shifting from traditional synchronous generators to inverter-based renewable energy sources (IRESs). This shift is expected to reduce the grid's available fault level (AFL), potentially impacting grid functionality, particularly during the integration of IRESs into weak grids. This paper examines the challenges associated with weak grids, focusing on the steady-state and dynamic stability of IRES when integrated into these systems. In the steady-state analysis, the effects of AFL, injected power volume, and grid characteristics on the steady-state voltage at the point of interconnection were explored. For dynamic stability, eigenvalue and <b>H</b><sub>2</sub> norm analyses are used for evaluation. Sensitivity analysis is conducted to assess the impact of these factors on the stability of IRESs connected to weak grids. A detailed case study using the IEEE 39 bus test power system is included to demonstrate our findings, where the steady-state and dynamic stability of IRES connected to the test system are assessed using the proposed methods. The accuracy of these analyses is confirmed by extensive simulation studies on the OPAL-RT real-time digital simulator platform.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"6 4","pages":"525-544"},"PeriodicalIF":1.6,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12151","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140997231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Theoretical study on Stark effect of Rydberg atom in super low frequency electric field measurement","authors":"Hongtian Song, Yong Xiao, Shanshan Hu, Dongping Xiao, BaoShuai Wang, Zhuxin Shi, Huaiqing Zhang","doi":"10.1049/esi2.12149","DOIUrl":"10.1049/esi2.12149","url":null,"abstract":"<p>Super low frequency electric field measurements are crucial in analysing electromagnetic compatibility, assessing equipment status, and other related fields. Rydberg atom-based super low frequency electric field measurements are performed by observing the Stark shift in the spectrum of the Rydberg state. In a specific range of field strength (<i>E</i> < <i>E</i><sub>avoid</sub>, where <i>E</i><sub>avoid</sub> is the threshold to avoid crossing electric fields), the Rydberg atomic spectrum experiences a quadratic frequency shift in relation to the field strength, with the coefficient being determined by the atomic polarisability <i>α</i>. The authors establish a dynamic equation for the interaction between the external electric field and the atomic system, and present the Stark structure diagram of the Caesium Rydberg atom. The mathematical formulae for <i>α</i> and <i>E</i><sub>avoid</sub> in different Rydberg states are also obtained: <i>α</i> = A × (<i>n</i>*)<sup>6</sup> + B × (<i>n</i>*)<sup>7</sup> and <i>E</i><sub>avoid</sub> = C/(<i>n</i>*)<sup>5</sup> + D/(<i>n</i>*)<sup>7</sup>, where A(B) = 2.2503 × 10<sup>−9</sup>(7.49,948 × 10<sup>−11</sup>) and C(<i>D</i>) = 1.68,868 × 10<sup>8</sup>(2.45,991 × 10<sup>9</sup>). The error of <i>α</i> and <i>E</i><sub>avoid</sub> compared with the experimental values does not exceed 8% and is even lower in the low Rydberg states. Accurately calculating the values of <i>α</i> and <i>E</i><sub>avoid</sub> is crucial in incorporating the Rydberg atom quantum coherence effect into super low frequency electric field measurements in new power systems.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"6 2","pages":"174-181"},"PeriodicalIF":2.4,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12149","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140706066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xi Liu, Jingbo Mao, Hongtao Yan, Chunjing Lin, Chuang Qi, Tao Yan, Li Lao, Yazhou Sun
{"title":"Changes in performance and thermal stability of Ni0.8Co0.1Al0.1/graphite batteries with excessive water","authors":"Xi Liu, Jingbo Mao, Hongtao Yan, Chunjing Lin, Chuang Qi, Tao Yan, Li Lao, Yazhou Sun","doi":"10.1049/esi2.12148","DOIUrl":"10.1049/esi2.12148","url":null,"abstract":"<p>During the production process of lithium-ion batteries, there exists a scenario of excessive water inside the battery due to poor water control in the factory environment. In addition, the battery housing may be damaged by corrosion, external vibration etc., which would cause water to enter the battery. To the best of the authors’ knowledge, there is little literature to reveal the influencing mechanism related to the above issue. The effects of excessive water on battery performance and safety were discussed. The results show that when the battery absorbs excessive water, the capacity decreases and the self-discharging rate increases rapidly. The self-heating temperature of the battery shows an increasing trend. The thermal runaway temperature decreases significantly with the time from self-heating to thermal runaway dramatically shortened. The thermal stability of the battery deteriorates throughout the reaction process. This is mainly due to the mechanisms by which the water absorbed in the battery reacts with the electrolyte and the electrode material, resulting in the decrease of the electrolyte conductivity and the corrosion of the electrode material, as well as the thickening of the Solid Electrolyte Interface film and the accumulation of impurities. The findings are of positive significance in demonstrating the quantitative relationship between excessive water and the performance and safety of batteries. Also, it can add to the understanding of the complex scenarios of battery spontaneous failure, which is vital for solving battery self-thermal runaways.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"6 S1","pages":"724-738"},"PeriodicalIF":1.6,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12148","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140745503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jin Xu, Qian Xiao, Hongjie Jia, Yunfei Mu, Yu Jin, Wenbiao Lu, Shiqian Ma
{"title":"A simplified control parameter optimisation method of the hybrid modular multilevel converter in the medium-voltage DC distribution network for improved stability under a weak AC system","authors":"Jin Xu, Qian Xiao, Hongjie Jia, Yunfei Mu, Yu Jin, Wenbiao Lu, Shiqian Ma","doi":"10.1049/esi2.12147","DOIUrl":"10.1049/esi2.12147","url":null,"abstract":"<p>To improve the stability of the hybrid modular multilevel converter (MMC), a simplified dominant mode-based control parameter optimisation method of the hybrid MMC system is proposed. Firstly, in the medium-voltage DC distribution network, the small-signal model of the hybrid MMC is established. Secondly, the influence of a weak AC system on stability is analysed through eigenvalue analysis. Finally, a simplified objective function is designed for eigenvalues of the dominant mode by considering only real parts, and improved small-signal stability can be achieved by control parameters optimisation. The proposed method optimises all control parameters at the same time, which further reduces the number of algorithm iterations. Simulation results show that by the proposed control parameter optimisation method, the hybrid MMC has better transient performance and reduced disturbance under SCR variation, indicating a significantly improved system stability, and the dynamic response time can be reduced.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"6 4","pages":"512-524"},"PeriodicalIF":1.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12147","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140758664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiebei Zhu, Huadong Sun, Yongning Chi, Xiaorong Xie, Jiabing Hu, Haoran Zhao, Siqi Bu, Yan Xu, Fei Teng, Qiteng Hong, Leijiao Ge
{"title":"Guest Editorial: Dynamic analysis, control, and situation awareness of power systems with high penetrations of power electronic converters","authors":"Jiebei Zhu, Huadong Sun, Yongning Chi, Xiaorong Xie, Jiabing Hu, Haoran Zhao, Siqi Bu, Yan Xu, Fei Teng, Qiteng Hong, Leijiao Ge","doi":"10.1049/esi2.12146","DOIUrl":"https://doi.org/10.1049/esi2.12146","url":null,"abstract":"<p>In recent decades, global power grids have evolved with a rapid and extensive development of power electronic converters (PEC), including renewable energy systems (RES), high-voltage DC (HVDC) transmission, flexible AC transmission system (FACTS), energy storages, and microgrids. <span>The distinct characteristics of power electronic devices</span> <span>traditional synchronous generators, especially their rapid control speed, wide-band performance and lack of inertia response and spinning reserve, are altering grid dynamics, and inducing new stability challenges</span>. Continuation of such trends could further exacerbate the risk to the stability of power grids because of factors such as low inertias, lack of spinning reserve to quickly nullify active power mismatch between demand and supply.</p><p>Therefore, scientific investigations on novel dynamic modelling and stability analysis methods, data-driven monitoring and situation awareness on grid inertia-power-frequency evolution, grid dynamic frequency forecast methodologies in consideration of novel PEC control schemes, and advanced PEC grid integration control schemes to minimise frequency management risks become increasingly crucial for the secured operations of power systems with high PEC penetrations. In this Special Issue, namely ‘Dynamic Analysis, Control, and Situation Awareness of Power Systems with High Penetrations of Power Electronic Converters’, we have presented eight original papers of sufficient quality and innovation. The 10 eventually accepted papers can be clustered into three two categories, namely novel control design, stability and fault analysis.</p><p>Zhu et al. present a supercapacitor-based coordinated synthetic inertia (SCSI) scheme for a voltage source converter-based HVDC (VSC-HVDC) integrated offshore wind farm (OWF). The proposed SCSI allows the OWF to provide a designated inertial response to an onshore grid. The results show that the proposed SCSI scheme can provide required inertial support from WTG-installed supercapacitors to the onshore grid through the VSC-HVDC link, significantly improving the onshore frequency stability (https://doi.org/10.1049/esi2.12137).</p><p>Ghamari et al. design a Lyapunov-based adaptive backstepping control approach for a power Buck converter, as an advanced version of the Backstepping method utilising Lyapunov stability function to reach a higher stability and a better disturbance rejection behaviour in the practical applications. In addition, to compensate for disturbances with wider ranges such as supply voltage variation, parametric variation and noise, this paper applies a metaheuristic algorithm in the control scheme called grey wolf optimisation algorithm of a nature-inspired algorithm with faster decision-making dynamics along with more accuracy over different optimisation algorithms (https://doi.org/10.1049/esi2.12098).</p><p>Arunagiri et al. present a new technique based on active damped dual loop <i>αβ</i>-frame curr","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"6 1","pages":"1-4"},"PeriodicalIF":2.4,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12146","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140331161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Joint contribution of RTEM and AGC system for frequency stabilisation in renewable energy integrated power system","authors":"Liza Debbarma, Sanjoy Debbarma, Kingshuk Roy, Siddhartha Deb Roy, Piyush Pratap Singh","doi":"10.1049/esi2.12145","DOIUrl":"10.1049/esi2.12145","url":null,"abstract":"<p>Increasing penetration of variable renewable generations will diminish system inertia thereby degrading the conventional frequency regulation capability. As a result, maintaining frequency stability will be more and more challenging with traditional approaches. Even though renewable sources integration would jeopardise the grid stability, it also presents several opportunities as well. For example, converter-interfaced generators can bid in real-time electricity markets (RTEM) and provide short-time dispatch to minimise load-generation mismatch. In this paper, an integrated approach that accommodates discrete automatic generation control (AGC) system with a regulation mileage framework and RTEM model to balance generation and consumption is proposed. The RTEM model is assumed to have a five-minute dispatch trading interval which is to some extent comparable to the discrete AGC system. Furthermore, a fractional order PID (FOPID) controller is equipped in the AGC system whose parameters are tuned using a novel metaheuristic-based optimisation called Lichtenberg Algorithm (LA). The proposed framework is tested in a three-area system under several operating conditions to reveal the improvement in the dynamic performance of the system. The objective function is also incorporated with mileage payment that allows a fair compensation rule for all the units.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"6 4","pages":"498-511"},"PeriodicalIF":1.6,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12145","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140216088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}