Chemical Reviews最新文献

筛选
英文 中文
Benzenoid Aromatics from Renewable Resources 从可再生资源中提取苯环芳烃
IF 62.1 1区 化学
Chemical Reviews Pub Date : 2024-09-17 DOI: 10.1021/acs.chemrev.4c00087
Shasha Zheng, Zhenlei Zhang, Songbo He, Huaizhou Yang, Hanan Atia, Ali M. Abdel-Mageed, Sebastian Wohlrab, Eszter Baráth, Sergey Tin, Hero J. Heeres, Peter J. Deuss, Johannes G. de Vries
{"title":"Benzenoid Aromatics from Renewable Resources","authors":"Shasha Zheng, Zhenlei Zhang, Songbo He, Huaizhou Yang, Hanan Atia, Ali M. Abdel-Mageed, Sebastian Wohlrab, Eszter Baráth, Sergey Tin, Hero J. Heeres, Peter J. Deuss, Johannes G. de Vries","doi":"10.1021/acs.chemrev.4c00087","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00087","url":null,"abstract":"In this Review, all known chemical methods for the conversion of renewable resources into benzenoid aromatics are summarized. The raw materials that were taken into consideration are CO<sub>2</sub>; lignocellulose and its constituents cellulose, hemicellulose, and lignin; carbohydrates, mostly glucose, fructose, and xylose; chitin; fats and oils; terpenes; and materials that are easily obtained via fermentation, such as biogas, bioethanol, acetone, and many more. There are roughly two directions. One much used method is catalytic fast pyrolysis carried out at high temperatures (between 300 and 700 °C depending on the raw material), which leads to the formation of biochar; gases, such as CO, CO<sub>2</sub>, H<sub>2</sub>, and CH<sub>4</sub>; and an oil which is a mixture of hydrocarbons, mostly aromatics. The carbon selectivities of this method can be reasonably high when defined small molecules such as methanol or hexane are used but are rather low when highly oxygenated compounds such as lignocellulose are used. The other direction is largely based on the multistep conversion of platform chemicals obtained from lignocellulose, cellulose, or sugars and a limited number of fats and terpenes. Much research has focused on furan compounds such as furfural, 5-hydroxymethylfurfural, and 5-chloromethylfurfural. The conversion of lignocellulose to xylene via 5-chloromethylfurfural and dimethylfuran has led to the construction of two large-scale plants, one of which has been operational since 2023.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"136 1","pages":""},"PeriodicalIF":62.1,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142235457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical Regulation of Polymer Gels 聚合物凝胶的机械调节
IF 62.1 1区 化学
Chemical Reviews Pub Date : 2024-09-16 DOI: 10.1021/acs.chemrev.3c00498
Chenggong Xu, Yi Chen, Siyang Zhao, Deke Li, Xing Tang, Haili Zhang, Jinxia Huang, Zhiguang Guo, Weimin Liu
{"title":"Mechanical Regulation of Polymer Gels","authors":"Chenggong Xu, Yi Chen, Siyang Zhao, Deke Li, Xing Tang, Haili Zhang, Jinxia Huang, Zhiguang Guo, Weimin Liu","doi":"10.1021/acs.chemrev.3c00498","DOIUrl":"https://doi.org/10.1021/acs.chemrev.3c00498","url":null,"abstract":"The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"28 1","pages":""},"PeriodicalIF":62.1,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142235458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical Regulation of Polymer Gels 聚合物凝胶的机械调节
IF 51.4 1区 化学
Chemical Reviews Pub Date : 2024-09-16 DOI: 10.1021/acs.chemrev.3c0049810.1021/acs.chemrev.3c00498
Chenggong Xu, Yi Chen, Siyang Zhao, Deke Li, Xing Tang, Haili Zhang, Jinxia Huang*, Zhiguang Guo* and Weimin Liu*, 
{"title":"Mechanical Regulation of Polymer Gels","authors":"Chenggong Xu,&nbsp;Yi Chen,&nbsp;Siyang Zhao,&nbsp;Deke Li,&nbsp;Xing Tang,&nbsp;Haili Zhang,&nbsp;Jinxia Huang*,&nbsp;Zhiguang Guo* and Weimin Liu*,&nbsp;","doi":"10.1021/acs.chemrev.3c0049810.1021/acs.chemrev.3c00498","DOIUrl":"https://doi.org/10.1021/acs.chemrev.3c00498https://doi.org/10.1021/acs.chemrev.3c00498","url":null,"abstract":"<p >The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"124 18","pages":"10435–10508 10435–10508"},"PeriodicalIF":51.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142318076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents 高价碘(III)试剂合成应用的最新进展
IF 51.4 1区 化学
Chemical Reviews Pub Date : 2024-09-13 DOI: 10.1021/acs.chemrev.4c0030310.1021/acs.chemrev.4c00303
Akira Yoshimura*,  and , Viktor V. Zhdankin*, 
{"title":"Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents","authors":"Akira Yoshimura*,&nbsp; and ,&nbsp;Viktor V. Zhdankin*,&nbsp;","doi":"10.1021/acs.chemrev.4c0030310.1021/acs.chemrev.4c00303","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00303https://doi.org/10.1021/acs.chemrev.4c00303","url":null,"abstract":"<p >Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7–8 years, between 2016 and 2024.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"124 19","pages":"11108–11186 11108–11186"},"PeriodicalIF":51.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.chemrev.4c00303","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142403141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents 高价碘(III)试剂合成应用的最新进展
IF 62.1 1区 化学
Chemical Reviews Pub Date : 2024-09-13 DOI: 10.1021/acs.chemrev.4c00303
Akira Yoshimura, Viktor V. Zhdankin
{"title":"Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents","authors":"Akira Yoshimura, Viktor V. Zhdankin","doi":"10.1021/acs.chemrev.4c00303","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00303","url":null,"abstract":"Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7–8 years, between 2016 and 2024.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"37 1","pages":""},"PeriodicalIF":62.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142198100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strategies and Mechanisms of First-Row Transition Metal-Regulated Radical C-H Functionalization. 第一排过渡金属调控自由基 C-H 功能化的策略和机制。
IF 51.4 1区 化学
Chemical Reviews Pub Date : 2024-09-11 Epub Date: 2024-08-08 DOI: 10.1021/acs.chemrev.4c00188
Xinghua Wang, Jing He, Ya-Nan Wang, Zhenyan Zhao, Kui Jiang, Wei Yang, Tao Zhang, Shiqi Jia, Kangbao Zhong, Linbin Niu, Yu Lan
{"title":"Strategies and Mechanisms of First-Row Transition Metal-Regulated Radical C-H Functionalization.","authors":"Xinghua Wang, Jing He, Ya-Nan Wang, Zhenyan Zhao, Kui Jiang, Wei Yang, Tao Zhang, Shiqi Jia, Kangbao Zhong, Linbin Niu, Yu Lan","doi":"10.1021/acs.chemrev.4c00188","DOIUrl":"10.1021/acs.chemrev.4c00188","url":null,"abstract":"<p><p>Radical C-H functionalization represents a useful means of streamlining synthetic routes by avoiding substrate preactivation and allowing access to target molecules in fewer steps. The first-row transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are Earth-abundant and can be employed to regulate radical C-H functionalization. The use of such metals is desirable because of the diverse interaction modes between first-row transition metal complexes and radical species including radical addition to the metal center, radical addition to the ligand of metal complexes, radical substitution of the metal complexes, single-electron transfer between radicals and metal complexes, hydrogen atom transfer between radicals and metal complexes, and noncovalent interaction between the radicals and metal complexes. Such interactions could improve the reactivity, diversity, and selectivity of radical transformations to allow for more challenging radical C-H functionalization reactions. This review examines the achievements in this promising area over the past decade, with a focus on the state-of-the-art while also discussing existing limitations and the enormous potential of high-value radical C-H functionalization regulated by these metals. The aim is to provide the reader with a detailed account of the strategies and mechanisms associated with such functionalization.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":" ","pages":"10192-10280"},"PeriodicalIF":51.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141900076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triphasic Development of the Genetic Code. 遗传密码的三期发展。
IF 51.4 1区 化学
Chemical Reviews Pub Date : 2024-09-11 Epub Date: 2024-08-01 DOI: 10.1021/acs.chemrev.3c00915
Tze-Fei Wong
{"title":"Triphasic Development of the Genetic Code.","authors":"Tze-Fei Wong","doi":"10.1021/acs.chemrev.3c00915","DOIUrl":"10.1021/acs.chemrev.3c00915","url":null,"abstract":"<p><p>The genetic code contains an alphabet of genetically encoded amino acids. The ten Phase 1 amino acids, including Gly, Ala, Ser, Asp, Glu, Val, Leu, Ile, Pro and Thr, were available from the prebiotic environment, whereas the ten Phase 2 amino acids, including Phe, Tyr, Arg, His, Trp, Asn, Gln, Lys, Cys, and Met, became available only later from amino acid biosyntheses. In the archaeon <i>Methanopyrus kandleri</i>, the oldest organism known, the standard alphabet of 20 amino acids was \"frozen\" and no additional amino acid was encoded in the subsequent 3 Gyrs. Four decades ago, it was discovered that the code was frozen because all the organisms were so well adapted to the standard amino acids that oligogenic barriers, consisting of genes that are thoroughly dependent on the standard code, would cause loss of viability upon the deletion of any one amino acid from the code. Once the reason for the freezing of the code was ascertained, procedures were devised by scientists worldwide to enable the encoding of novel noncanonical amino acids (ncAAs). These encoded Phase 3 ncAAs now surpass the 20 canonical Phase 2 amino acids in the code.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":" ","pages":"9866-9872"},"PeriodicalIF":51.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393795/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141858205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis, Modulation, and Application of Two-Dimensional TMD Heterostructures. 二维 TMD 异质结构的合成、调制和应用。
IF 51.4 1区 化学
Chemical Reviews Pub Date : 2024-09-11 Epub Date: 2024-08-27 DOI: 10.1021/acs.chemrev.4c00174
Ruixia Wu, Hongmei Zhang, Huifang Ma, Bei Zhao, Wei Li, Yang Chen, Jianteng Liu, Jingyi Liang, Qiuyin Qin, Weixu Qi, Liang Chen, Jia Li, Bo Li, Xidong Duan
{"title":"Synthesis, Modulation, and Application of Two-Dimensional TMD Heterostructures.","authors":"Ruixia Wu, Hongmei Zhang, Huifang Ma, Bei Zhao, Wei Li, Yang Chen, Jianteng Liu, Jingyi Liang, Qiuyin Qin, Weixu Qi, Liang Chen, Jia Li, Bo Li, Xidong Duan","doi":"10.1021/acs.chemrev.4c00174","DOIUrl":"10.1021/acs.chemrev.4c00174","url":null,"abstract":"<p><p>Two-dimensional (2D) transition metal dichalcogenide (TMD) heterostructures have attracted a lot of attention due to their rich material diversity and stack geometry, precise controllability of structure and properties, and potential practical applications. These heterostructures not only overcome the inherent limitations of individual materials but also enable the realization of new properties through appropriate combinations, establishing a platform to explore new physical and chemical properties at micro-nano-pico scales. In this review, we systematically summarize the latest research progress in the synthesis, modulation, and application of 2D TMD heterostructures. We first introduce the latest techniques for fabricating 2D TMD heterostructures, examining the rationale, mechanisms, advantages, and disadvantages of each strategy. Furthermore, we emphasize the importance of characteristic modulation in 2D TMD heterostructures and discuss some approaches to achieve novel functionalities. Then, we summarize the representative applications of 2D TMD heterostructures. Finally, we highlight the challenges and future perspectives in the synthesis and device fabrication of 2D TMD heterostructures and provide some feasible solutions.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":" ","pages":"10112-10191"},"PeriodicalIF":51.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142071286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Singlet Oxygen Photophysics: From Liquid Solvents to Mammalian Cells. 单线态氧光物理学:从液态溶剂到哺乳动物细胞。
IF 51.4 1区 化学
Chemical Reviews Pub Date : 2024-09-11 Epub Date: 2024-08-06 DOI: 10.1021/acs.chemrev.4c00105
Mikkel Bregnhøj, Frederik Thorning, Peter R Ogilby
{"title":"Singlet Oxygen Photophysics: From Liquid Solvents to Mammalian Cells.","authors":"Mikkel Bregnhøj, Frederik Thorning, Peter R Ogilby","doi":"10.1021/acs.chemrev.4c00105","DOIUrl":"10.1021/acs.chemrev.4c00105","url":null,"abstract":"<p><p>Molecular oxygen, O<sub>2</sub>, has long provided a cornerstone for studies in chemistry, physics, and biology. Although the triplet ground state, O<sub>2</sub>(X<sup>3</sup>Σ<sub>g</sub><sup>-</sup>), has garnered much attention, the lowest excited electronic state, O<sub>2</sub>(a<sup>1</sup>Δ<sub>g</sub>), commonly called singlet oxygen, has attracted appreciable interest, principally because of its unique chemical reactivity in systems ranging from the Earth's atmosphere to biological cells. Because O<sub>2</sub>(a<sup>1</sup>Δ<sub>g</sub>) can be produced and deactivated in processes that involve light, the photophysics of O<sub>2</sub>(a<sup>1</sup>Δ<sub>g</sub>) are equally important. Moreover, pathways for O<sub>2</sub>(a<sup>1</sup>Δ<sub>g</sub>) deactivation that regenerate O<sub>2</sub>(X<sup>3</sup>Σ<sub>g</sub><sup>-</sup>), which address fundamental principles unto themselves, kinetically compete with the chemical reactions of O<sub>2</sub>(a<sup>1</sup>Δ<sub>g</sub>) and, thus, have practical significance. Due to technological advances (e.g., lasers, optical detectors, microscopes), data acquired in the past ∼20 years have increased our understanding of O<sub>2</sub>(a<sup>1</sup>Δ<sub>g</sub>) photophysics appreciably and facilitated both spatial and temporal control over the behavior of O<sub>2</sub>(a<sup>1</sup>Δ<sub>g</sub>). One goal of this Review is to summarize recent developments that have broad ramifications, focusing on systems in which oxygen forms a contact complex with an organic molecule M (e.g., a liquid solvent). An important concept is the role played by the M<sup>+•</sup>O<sub>2</sub><sup>-•</sup> charge-transfer state in both the formation and deactivation of O<sub>2</sub>(a<sup>1</sup>Δ<sub>g</sub>).</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":" ","pages":"9949-10051"},"PeriodicalIF":51.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141892264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gas Evolution in Water Electrolysis 水电解中的气体演变
IF 62.1 1区 化学
Chemical Reviews Pub Date : 2024-09-11 DOI: 10.1021/acs.chemrev.4c00211
Paul A. Kempler, Robert H. Coridan, Long Luo
{"title":"Gas Evolution in Water Electrolysis","authors":"Paul A. Kempler, Robert H. Coridan, Long Luo","doi":"10.1021/acs.chemrev.4c00211","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00211","url":null,"abstract":"Gas bubbles generated by the hydrogen evolution reaction and oxygen evolution reaction during water electrolysis influence the energy conversion efficiency of hydrogen production. Here, we survey what is known about the interaction of gas bubbles and electrode surfaces and the influence of gas evolution on practicable devices used for water electrolysis. We outline the physical processes occurring during the life cycle of a bubble, summarize techniques used to characterize gas evolution phenomena in situ and in practical device environments, and discuss ways that electrodes can be tailored to facilitate gas removal at high current densities. Lastly, we review efforts to model the behavior of individual gas bubbles and multiphase flows produced at gas-evolving electrodes. We conclude our review with a short summary of outstanding questions that could be answered by future efforts to characterize gas evolution in electrochemical device environments or by improved simulations of multiphase flows.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"17 1","pages":""},"PeriodicalIF":62.1,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142171360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信