Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)最新文献

筛选
英文 中文
Applying DevOps to Machine Learning Processes: A Systematic Mapping 将DevOps应用于机器学习过程:系统映射
B. M. A. Matsui, D. Goya
{"title":"Applying DevOps to Machine Learning Processes: A Systematic Mapping","authors":"B. M. A. Matsui, D. Goya","doi":"10.5753/eniac.2021.18284","DOIUrl":"https://doi.org/10.5753/eniac.2021.18284","url":null,"abstract":"Práticas de DevOps têm sido cada vez mais utilizadas por equipes de engenharia de software com o intuito de aprimorar as etapas de desenvolvimento. Em processos que envolvem machine learning (ML), DevOps também pode ser aplicado a fim de implantar modelos de aprendizado de máquina em produção – prática também conhecida como MLOps. Neste mapeamento sistemático objetiva-se entender como DevOps tem sido aplicado a processos de machine learning e quais são os desafios enfrentados. Foram selecionados 15 artigos e observou-se que a maioria faz uso de práticas de CI/CD e propõe arquiteturas para a implantação de modelos de ML. Como maiores desafios, têm-se as características inerentes aos modelos de ML e resistência à mudança.","PeriodicalId":318676,"journal":{"name":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122457020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Handling uncertainty through Bayesian inference for Species Distribution Modelling in the Amazon Basin region 利用贝叶斯推理处理亚马逊流域物种分布模型的不确定性
Renato O. Miyaji, Pedro L. P. Corrêa
{"title":"Handling uncertainty through Bayesian inference for Species Distribution Modelling in the Amazon Basin region","authors":"Renato O. Miyaji, Pedro L. P. Corrêa","doi":"10.5753/eniac.2021.18243","DOIUrl":"https://doi.org/10.5753/eniac.2021.18243","url":null,"abstract":"Uma das ferramentas mais utilizadas para o monitoramento da biodiversidade é a modelagem de distribuição de espécies. Para a sua aplicação, é necessário possuir uma grande base de dados confiáveis a respeito da ocorrência de espécies. Entretanto, essa condição não é satisfeita quando existem poucos registros de ocorrência. Nesse contexto, podem ser aplicadas técnicas de tratamento de incertezas. Assim, este trabalho buscou utilizar a abordagem Bayesiana para permitir a modelagem de distribuição de espécies na região da Bacia Amazônica próxima a Manaus (AM), com base em dados coletados pelo projeto GoAmazon 2014/15. Os resultados foram comparados com os resultantes de técnicas clássicas, obtendo desempenhos semelhantes.","PeriodicalId":318676,"journal":{"name":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116196717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Analysis of Collaborative Filtering-Based Predictors of Scores in Surveys of a Large Company 某大公司问卷调查中基于协同过滤的分数预测因子的比较分析
M. F. Oliveira, M. Delgado, R. Lüders
{"title":"Comparative Analysis of Collaborative Filtering-Based Predictors of Scores in Surveys of a Large Company","authors":"M. F. Oliveira, M. Delgado, R. Lüders","doi":"10.5753/eniac.2021.18299","DOIUrl":"https://doi.org/10.5753/eniac.2021.18299","url":null,"abstract":"Collaborative Filtering (CF) can be understood as the process of predicting the preferences of users and deriving useful patterns by studying their activities. In the survey context, it can be used to predict answers to questions as combinations of other available answers. In this paper, we aim to test five CF-based algorithms (item-item, iterative matrix factorization, neural collaborative filtering, logistic matrix factorization, and an ensemble of them) to estimate scores in four survey applications (checkpoints) composed of 700,000 employee's ratings. These data have been collected from 2019 to 2020 by a large Brazilian tech company with more than 10,000 employees. The results show that collaborative filtering approaches provide relevant alternatives to score questions of surveys. They provided good quality estimates. This result can be further explored to eventually reduce the size of questionnaires, avoiding burden phenomena faced by respondents when dealing with large surveys.","PeriodicalId":318676,"journal":{"name":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114781071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of a Brazilian Indigenous corpus using machine learning methods 使用机器学习方法分析巴西土著语料库
T. Lima, André C. A. Nascimento, P. Miranda, R. F. Mello
{"title":"Analysis of a Brazilian Indigenous corpus using machine learning methods","authors":"T. Lima, André C. A. Nascimento, P. Miranda, R. F. Mello","doi":"10.5753/eniac.2021.18246","DOIUrl":"https://doi.org/10.5753/eniac.2021.18246","url":null,"abstract":"In Brazil, several minority languages suffer a serious risk of extinction. The appropriate documentation of such languages is a fundamental step to avoid that. However, for some of those languages, only a small amount of text corpora is digitally accessible. Meanwhile there are many issues related to the identification of indigenous languages, which may help to identify key similarities among them, as well as to connect related languages and dialects. Therefore, this paper proposes to study and automatically classify 26 neglected Brazilian native languages, considering a small amount of training data, under a supervised and unsupervised setting. Our findings indicate that the use of machine learning models to the analysis of Brazilian Indigenous corpora is very promising, and we hope this work encourage more research on this topic in the next years.","PeriodicalId":318676,"journal":{"name":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129477550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Comparative Analysis of Countries' Performance According to SDG Indicators based on Machine Learning 基于机器学习的各国可持续发展目标指标绩效比较分析
Guilherme Souza, J. Santos, Gabriel SantClair, Janaína Gomide, Luan Santos
{"title":"A Comparative Analysis of Countries' Performance According to SDG Indicators based on Machine Learning","authors":"Guilherme Souza, J. Santos, Gabriel SantClair, Janaína Gomide, Luan Santos","doi":"10.5753/eniac.2021.18248","DOIUrl":"https://doi.org/10.5753/eniac.2021.18248","url":null,"abstract":"The Sustainable Development Goals (SDGs) are part of a global effort to reduce the impacts of climate change, promoting social justice and economic growth. The United Nations provides a database with hundreds of indicators to track the SDGs since 2016 for a total of 302 regions. This work aims to assess which countries are in a similar situation regarding sustainable development. Principal Component Analysis was used to reduce the dimension of the dataset and k-means algorithm was used to cluster countries according to their SDGs indicators. For the years of 2016, 2017 and 2018 were obtained 11, 13 and 11 groups, respectively. This paper also analyses clusters changes throughout the years.","PeriodicalId":318676,"journal":{"name":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","volume":"117 4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130131814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The 5th Brazilian Competition on Knowledge Discovery in Databases (KDD-BR 2021) 第五届巴西数据库知识发现竞赛(KDD-BR 2021)
A. C. Lorena, F. Verri, Tiago A. Almeida
{"title":"The 5th Brazilian Competition on Knowledge Discovery in Databases (KDD-BR 2021)","authors":"A. C. Lorena, F. Verri, Tiago A. Almeida","doi":"10.5753/eniac.2021.18425","DOIUrl":"https://doi.org/10.5753/eniac.2021.18425","url":null,"abstract":"Este artigo editorial descreve a Competição Brasileira de Descoberta de Conhecimento em Bancos de Dados (KDD-BR 2021) e resume as contribuições das três melhores soluções obtidas em sua quinta edição. A competição de 2021 envolveu a resolução de instâncias do Problema do Caixeiro Viajante, de diferentes tamanhos, usando uma abordagem de previsão de arestas.","PeriodicalId":318676,"journal":{"name":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126777355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fake News Detection about Covid-19 in the Portuguese Language 葡萄牙语新冠肺炎假新闻检测
Anísio Pereira Batista Filho, Débora da Conceição Araújo, Maverick Andre Dionisio Ferreira, P. M. Mattos Neto
{"title":"Fake News Detection about Covid-19 in the Portuguese Language","authors":"Anísio Pereira Batista Filho, Débora da Conceição Araújo, Maverick Andre Dionisio Ferreira, P. M. Mattos Neto","doi":"10.5753/eniac.2021.18278","DOIUrl":"https://doi.org/10.5753/eniac.2021.18278","url":null,"abstract":"A disseminação de notícias falsas tem sido um problema notado em diversos setores da sociedade, e vem dificultando o combate à pandemia causada pelo novo coronavírus (Sars-Cov-2). Combater desinformação sobre o Sars-Cov-2, principalmente nas redes sociais, é de fundamental importância para o controle da propagação do vírus e, consequentemente, da pandemia. Diante disso, nesse trabalho são construídos modelos de aprendizado supervisionado focados na identificação de notícias falsas sobre o novo coronavírus. Como resultados, foram construídos e avaliados 18 modelos, os quais chegaram a alcançar 0.62%, 0.82% e 0.47% de f-score para as classes consideradas (news, opinion e fake).","PeriodicalId":318676,"journal":{"name":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121158026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Iterative machine learning applied to annotation of text datasets 迭代机器学习在文本数据集标注中的应用
Thiago Abdo, Fabiano Silva
{"title":"Iterative machine learning applied to annotation of text datasets","authors":"Thiago Abdo, Fabiano Silva","doi":"10.5753/eniac.2021.18268","DOIUrl":"https://doi.org/10.5753/eniac.2021.18268","url":null,"abstract":"The purpose of this paper is to analyze the use of different machine learning approaches and algorithms to be integrated as an automated assistance on a tool to aid the creation of new annotated datasets. We evaluate how they scale in an environment without dedicated machine learning hardware. In particular, we study the impact over a dataset with few examples and one that is being constructed. We experiment using deep learning algorithms (Bert) and classical learning algorithms with a lower computational cost (W2V and Glove combined with RF and SVM). Our experiments show that deep learning algorithms have a performance advantage over classical techniques. However, deep learning algorithms have a high computational cost, making them inadequate to an environment with reduced hardware resources. Simulations using Active and Iterative machine learning techniques to assist the creation of new datasets are conducted. For these simulations, we use the classical learning algorithms because of their computational cost. The knowledge gathered with our experimental evaluation aims to support the creation of a tool for building new text datasets.","PeriodicalId":318676,"journal":{"name":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124914794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vector space models for trace clustering: a comparative study 轨迹聚类的向量空间模型:比较研究
Mateus Alex dos Santos Luna, Andre Paulino de Lima, T. Neubauer, M. Fantinato, S. M. Peres
{"title":"Vector space models for trace clustering: a comparative study","authors":"Mateus Alex dos Santos Luna, Andre Paulino de Lima, T. Neubauer, M. Fantinato, S. M. Peres","doi":"10.5753/eniac.2021.18274","DOIUrl":"https://doi.org/10.5753/eniac.2021.18274","url":null,"abstract":"Process mining explores event logs to offer valuable insights to business process managers. Some types of business processes are hard to mine, including unstructured and knowledge-intensive processes. Then, trace clustering is usually applied to event logs aiming to break it into sublogs, making it more amenable to the typical process mining task. However, applying clustering algorithms involves decisions, such as how traces are represented, that can lead to better results. In this paper, we compare four vector space models for trace clustering, using them with an agglomerative clustering algorithm in synthetic and real-world event logs. Our analyses suggest the embeddings-based vector space model can properly handle trace clustering in unstructured processes.","PeriodicalId":318676,"journal":{"name":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132637698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Uma Abordagem de Agrupamento Automático de Dados Baseada na Otimização por Busca em Grupo Memética 一种基于模因组搜索优化的自动数据聚类方法
Luciano D. S. Pacífico, Teresa B Ludermir
{"title":"Uma Abordagem de Agrupamento Automático de Dados Baseada na Otimização por Busca em Grupo Memética","authors":"Luciano D. S. Pacífico, Teresa B Ludermir","doi":"10.5753/eniac.2021.18262","DOIUrl":"https://doi.org/10.5753/eniac.2021.18262","url":null,"abstract":"Uma das tarefas mais primitivas em organização de padrões, a Análise de Agrupamentos, é um problema difícil em análise exploratória de dados. Muitos dos algoritmos de agrupamento são facilmente presos em mínimos locais, por não possuírem bons operadores de busca global. Neste trabalho, um algoritmo de Inteligência de Enxames (SIs) memético é apresentado, baseado na Otimização por Busca em Grupo e no K-Means, chamado MGSO, que tenta encontrar o melhor número de agrupamentos, assim como a melhor distribuição dos dados nesses agrupamentos, simultaneamente. O MGSO mostrou-se capaz de encontrar boas soluções globais quando testado em nove problemas reais, em comparação a outros SIs e Algoritmos Evolucionários da literatura.","PeriodicalId":318676,"journal":{"name":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115246647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信