{"title":"第五届巴西数据库知识发现竞赛(KDD-BR 2021)","authors":"A. C. Lorena, F. Verri, Tiago A. Almeida","doi":"10.5753/eniac.2021.18425","DOIUrl":null,"url":null,"abstract":"Este artigo editorial descreve a Competição Brasileira de Descoberta de Conhecimento em Bancos de Dados (KDD-BR 2021) e resume as contribuições das três melhores soluções obtidas em sua quinta edição. A competição de 2021 envolveu a resolução de instâncias do Problema do Caixeiro Viajante, de diferentes tamanhos, usando uma abordagem de previsão de arestas.","PeriodicalId":318676,"journal":{"name":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The 5th Brazilian Competition on Knowledge Discovery in Databases (KDD-BR 2021)\",\"authors\":\"A. C. Lorena, F. Verri, Tiago A. Almeida\",\"doi\":\"10.5753/eniac.2021.18425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Este artigo editorial descreve a Competição Brasileira de Descoberta de Conhecimento em Bancos de Dados (KDD-BR 2021) e resume as contribuições das três melhores soluções obtidas em sua quinta edição. A competição de 2021 envolveu a resolução de instâncias do Problema do Caixeiro Viajante, de diferentes tamanhos, usando uma abordagem de previsão de arestas.\",\"PeriodicalId\":318676,\"journal\":{\"name\":\"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/eniac.2021.18425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2021.18425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The 5th Brazilian Competition on Knowledge Discovery in Databases (KDD-BR 2021)
Este artigo editorial descreve a Competição Brasileira de Descoberta de Conhecimento em Bancos de Dados (KDD-BR 2021) e resume as contribuições das três melhores soluções obtidas em sua quinta edição. A competição de 2021 envolveu a resolução de instâncias do Problema do Caixeiro Viajante, de diferentes tamanhos, usando uma abordagem de previsão de arestas.