一种基于模因组搜索优化的自动数据聚类方法

Luciano D. S. Pacífico, Teresa B Ludermir
{"title":"一种基于模因组搜索优化的自动数据聚类方法","authors":"Luciano D. S. Pacífico, Teresa B Ludermir","doi":"10.5753/eniac.2021.18262","DOIUrl":null,"url":null,"abstract":"Uma das tarefas mais primitivas em organização de padrões, a Análise de Agrupamentos, é um problema difícil em análise exploratória de dados. Muitos dos algoritmos de agrupamento são facilmente presos em mínimos locais, por não possuírem bons operadores de busca global. Neste trabalho, um algoritmo de Inteligência de Enxames (SIs) memético é apresentado, baseado na Otimização por Busca em Grupo e no K-Means, chamado MGSO, que tenta encontrar o melhor número de agrupamentos, assim como a melhor distribuição dos dados nesses agrupamentos, simultaneamente. O MGSO mostrou-se capaz de encontrar boas soluções globais quando testado em nove problemas reais, em comparação a outros SIs e Algoritmos Evolucionários da literatura.","PeriodicalId":318676,"journal":{"name":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uma Abordagem de Agrupamento Automático de Dados Baseada na Otimização por Busca em Grupo Memética\",\"authors\":\"Luciano D. S. Pacífico, Teresa B Ludermir\",\"doi\":\"10.5753/eniac.2021.18262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Uma das tarefas mais primitivas em organização de padrões, a Análise de Agrupamentos, é um problema difícil em análise exploratória de dados. Muitos dos algoritmos de agrupamento são facilmente presos em mínimos locais, por não possuírem bons operadores de busca global. Neste trabalho, um algoritmo de Inteligência de Enxames (SIs) memético é apresentado, baseado na Otimização por Busca em Grupo e no K-Means, chamado MGSO, que tenta encontrar o melhor número de agrupamentos, assim como a melhor distribuição dos dados nesses agrupamentos, simultaneamente. O MGSO mostrou-se capaz de encontrar boas soluções globais quando testado em nove problemas reais, em comparação a outros SIs e Algoritmos Evolucionários da literatura.\",\"PeriodicalId\":318676,\"journal\":{\"name\":\"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/eniac.2021.18262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2021.18262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚类分析是模式组织中最原始的任务之一,在探索性数据分析中是一个困难的问题。由于缺乏良好的全局搜索操作符,许多聚类算法很容易陷入局部最小值。摘要提出了一种基于群搜索优化和K-Means优化的模因群智能算法MGSO,该算法试图同时找到最佳的群数和数据在这些群中的最佳分布。与文献中的其他SIs和进化算法相比,MGSO能够在9个实际问题中找到良好的全局解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uma Abordagem de Agrupamento Automático de Dados Baseada na Otimização por Busca em Grupo Memética
Uma das tarefas mais primitivas em organização de padrões, a Análise de Agrupamentos, é um problema difícil em análise exploratória de dados. Muitos dos algoritmos de agrupamento são facilmente presos em mínimos locais, por não possuírem bons operadores de busca global. Neste trabalho, um algoritmo de Inteligência de Enxames (SIs) memético é apresentado, baseado na Otimização por Busca em Grupo e no K-Means, chamado MGSO, que tenta encontrar o melhor número de agrupamentos, assim como a melhor distribuição dos dados nesses agrupamentos, simultaneamente. O MGSO mostrou-se capaz de encontrar boas soluções globais quando testado em nove problemas reais, em comparação a outros SIs e Algoritmos Evolucionários da literatura.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信