Mateus Alex dos Santos Luna, Andre Paulino de Lima, T. Neubauer, M. Fantinato, S. M. Peres
{"title":"轨迹聚类的向量空间模型:比较研究","authors":"Mateus Alex dos Santos Luna, Andre Paulino de Lima, T. Neubauer, M. Fantinato, S. M. Peres","doi":"10.5753/eniac.2021.18274","DOIUrl":null,"url":null,"abstract":"Process mining explores event logs to offer valuable insights to business process managers. Some types of business processes are hard to mine, including unstructured and knowledge-intensive processes. Then, trace clustering is usually applied to event logs aiming to break it into sublogs, making it more amenable to the typical process mining task. However, applying clustering algorithms involves decisions, such as how traces are represented, that can lead to better results. In this paper, we compare four vector space models for trace clustering, using them with an agglomerative clustering algorithm in synthetic and real-world event logs. Our analyses suggest the embeddings-based vector space model can properly handle trace clustering in unstructured processes.","PeriodicalId":318676,"journal":{"name":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Vector space models for trace clustering: a comparative study\",\"authors\":\"Mateus Alex dos Santos Luna, Andre Paulino de Lima, T. Neubauer, M. Fantinato, S. M. Peres\",\"doi\":\"10.5753/eniac.2021.18274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Process mining explores event logs to offer valuable insights to business process managers. Some types of business processes are hard to mine, including unstructured and knowledge-intensive processes. Then, trace clustering is usually applied to event logs aiming to break it into sublogs, making it more amenable to the typical process mining task. However, applying clustering algorithms involves decisions, such as how traces are represented, that can lead to better results. In this paper, we compare four vector space models for trace clustering, using them with an agglomerative clustering algorithm in synthetic and real-world event logs. Our analyses suggest the embeddings-based vector space model can properly handle trace clustering in unstructured processes.\",\"PeriodicalId\":318676,\"journal\":{\"name\":\"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/eniac.2021.18274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2021.18274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vector space models for trace clustering: a comparative study
Process mining explores event logs to offer valuable insights to business process managers. Some types of business processes are hard to mine, including unstructured and knowledge-intensive processes. Then, trace clustering is usually applied to event logs aiming to break it into sublogs, making it more amenable to the typical process mining task. However, applying clustering algorithms involves decisions, such as how traces are represented, that can lead to better results. In this paper, we compare four vector space models for trace clustering, using them with an agglomerative clustering algorithm in synthetic and real-world event logs. Our analyses suggest the embeddings-based vector space model can properly handle trace clustering in unstructured processes.