{"title":"Control of Multicarrier Energy Systems from Buildings to Networks","authors":"Roy S. Smith, Varsha Behrunani, J. Lygeros","doi":"10.1146/annurev-control-042820-125219","DOIUrl":"https://doi.org/10.1146/annurev-control-042820-125219","url":null,"abstract":"Cost, efficiency, and emissions concerns have motivated the application of advanced control techniques to multiple carrier energy systems. Research in energy management and control over the last two decades has shown that significant energy and CO2 emissions reductions can be achieved. Within the last decade, this work has expanded to the domain of interconnected energy systems. The interconnection control of multiple energy carriers, conversion devices, and energy storage provides increased flexibility and energy/CO2 reduction potential. The focus of this article is on outlining the control methods required for these systems over a range of energy consumption and timescales. Dynamic interactions between multicarrier systems occur over timescales ranging from 15 minutes to seasons. The constrained nature of the resulting control problems favors optimization-based approaches. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 14 is May 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":29961,"journal":{"name":"Annual Review of Control Robotics and Autonomous Systems","volume":"58 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73426165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spacecraft-Mounted Robotics","authors":"P. Tsiotras, Matthew King-Smith, Lorenzo Ticozzi","doi":"10.1146/annurev-control-062122-082114","DOIUrl":"https://doi.org/10.1146/annurev-control-062122-082114","url":null,"abstract":"Space-mounted robotics is becoming increasingly mainstream for many space missions. The aim of this article is threefold: first, to give a broad and quick overview of the importance of spacecraft-mounted robotics for future in-orbit servicing missions; second, to review the basic current approaches for modeling and control of spacecraft-mounted robotic systems; and third, to introduce some new developments in terms of modeling and control of spacecraft-mounted robotic manipulators using the language of hypercomplex numbers (dual quaternions). Some outstanding research questions and potential future directions in the field are also discussed. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 14 is May 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":29961,"journal":{"name":"Annual Review of Control Robotics and Autonomous Systems","volume":"21 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82413255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Crowd Dynamics: Modeling and Control of Multiagent Systems","authors":"Xiaoqian Gong, M. Herty, B. Piccoli, G. Visconti","doi":"10.1146/annurev-control-060822-123629","DOIUrl":"https://doi.org/10.1146/annurev-control-060822-123629","url":null,"abstract":"This review aims to present recent developments in modeling and control of multiagent systems. A particular focus is set on crowd dynamics characterized by complex interactions among agents, also called social interactions, and large-scale systems. Specifically, in a crowd each individual agent interacts with a field generated by the other agents and the environment. These systems can be modeled at the microscopic scale by ordinary differential equations, while an alternative description at the mesoscopic scale is given by a partial differential equation for the propagation of the probability density of the agents. Control actions can be applied at the individual level as well as at the level of the corresponding fields. This article presents and compares different control types, and the specific application to multilane, multiclass traffic is developed in some detail, showing the main tools at work in a hybrid setting with relevant impacts on autonomous driving. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 14 is May 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":29961,"journal":{"name":"Annual Review of Control Robotics and Autonomous Systems","volume":"10 1 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77624301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Control of Low-Inertia Power Systems","authors":"F. Dörfler, Dominic Gross","doi":"10.1146/annurev-control-052622-032657","DOIUrl":"https://doi.org/10.1146/annurev-control-052622-032657","url":null,"abstract":"Electric power systems are undergoing an unprecedented transition from fossil fuel–based power plants to low-inertia systems that rely predominantly on power electronics and renewable energy resources. This article reviews the resulting control challenges and modeling fallacies, at both the device and system level, and focuses on novel aspects or classical concepts that need to be revised in light of the transition to low-inertia systems. To this end, we survey the literature on modeling of low-inertia systems, review research on the control of grid-connected power converters, and discuss the frequency dynamics of low-inertia systems. Moreover, we discuss system-level services from a control perspective. Overall, we conclude that the system-theoretic mindset is essential to bridge different research communities and understand the complex interactions of power electronics, electric machines, and their controls in large-scale low-inertia power systems. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 14 is May 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":29961,"journal":{"name":"Annual Review of Control Robotics and Autonomous Systems","volume":"124 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79562793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Internal Models in Biological Control.","authors":"Daniel McNamee, Daniel M Wolpert","doi":"10.1146/annurev-control-060117-105206","DOIUrl":"10.1146/annurev-control-060117-105206","url":null,"abstract":"<p><p>Rationality principles such as optimal feedback control and Bayesian inference underpin a probabilistic framework that has accounted for a range of empirical phenomena in biological sensorimotor control. To facilitate the optimization of flexible and robust behaviors consistent with these theories, the ability to construct internal models of the motor system and environmental dynamics can be crucial. In the context of this theoretic formalism, we review the computational roles played by such internal models and the neural and behavioral evidence for their implementation in the brain.</p>","PeriodicalId":29961,"journal":{"name":"Annual Review of Control Robotics and Autonomous Systems","volume":"2 ","pages":"339-364"},"PeriodicalIF":11.2,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520231/pdf/emss-79233.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37257719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Autonomy in Rehabilitation Robotics: An Intersection.","authors":"Brenna D Argall","doi":"10.1146/annurev-control-061417-041727","DOIUrl":"10.1146/annurev-control-061417-041727","url":null,"abstract":"<p><p>Within the field of human rehabilitation, robotic machines are used both to rehabilitate the body and to perform functional tasks. Robotics autonomy able to perceive the external world and reason about high-level control decisions, however, seldom is present in these machines. For functional tasks in particular, autonomy could help to decrease the operational burden on the human and perhaps even to increase access-and this potential only grows as human motor impairments become more severe. There are however serious, and often subtle, considerations to introducing clinically-feasible robotics autonomy to rehabilitation robots and machines. Today the fields of robotics autonomy and rehabilitation robotics are largely separate. The topic of this article is at the intersection of these fields: the introduction of clinically-feasible autonomy solutions to rehabilitation robots, and opportunities for autonomy within the rehabilitation domain.</p>","PeriodicalId":29961,"journal":{"name":"Annual Review of Control Robotics and Autonomous Systems","volume":"1 ","pages":"441-463"},"PeriodicalIF":13.4,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8313033/pdf/nihms-1646639.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39230123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}