BioelectricityPub Date : 2024-09-16eCollection Date: 2024-09-01DOI: 10.1089/bioe.2023.0050
Edward C Elson
{"title":"Embryo Development in a Stochastic Universe.","authors":"Edward C Elson","doi":"10.1089/bioe.2023.0050","DOIUrl":"10.1089/bioe.2023.0050","url":null,"abstract":"<p><p>Despite the elucidation of the many processes by which a single eukaryotic cell develops into a complex mature organism, it is still puzzling to some biologists how it is that an unvarying, interconnected set of processes becomes coordinated and insulated from a stochastic universe. This article suggests that electromagnetic processes deriving from the chemistry of an organism may provide such coordination. Specifically, the author develops the pacemaker concept, the periodic, autonomous electrical signal to the entire embryo, the result of which, after each pulse, is to alter or enlarge the transcriptome to produce the next level of complexity and maturity of the organism.</p>","PeriodicalId":29923,"journal":{"name":"Bioelectricity","volume":"6 3","pages":"196-203"},"PeriodicalIF":1.6,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447481/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioelectricityPub Date : 2024-08-28eCollection Date: 2024-09-01DOI: 10.1089/bioe.2024.0034
Mustafa B A Djamgoz, Michael Levin
{"title":"More on Pulsed Electric Fields, and More….","authors":"Mustafa B A Djamgoz, Michael Levin","doi":"10.1089/bioe.2024.0034","DOIUrl":"10.1089/bioe.2024.0034","url":null,"abstract":"","PeriodicalId":29923,"journal":{"name":"Bioelectricity","volume":"6 3","pages":"152-153"},"PeriodicalIF":1.6,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447480/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioelectricityPub Date : 2024-06-12eCollection Date: 2024-06-01DOI: 10.1089/bioe.2024.0009
Richard Nuccitelli, Amanda McDaniel
{"title":"Nano-Pulse Stimulation Therapy in Oncology.","authors":"Richard Nuccitelli, Amanda McDaniel","doi":"10.1089/bioe.2024.0009","DOIUrl":"10.1089/bioe.2024.0009","url":null,"abstract":"<p><strong>Background: </strong>Nano-Pulse Stimulation (NPS) therapy applies electric pulses in the nanosecond domain to initiate regulated cell death in the treated tissues. This nonthermal therapy has been used to treat a wide range of murine tumors and has been shown to activate the immune system to inhibit the growth of rechallenge tumors, as well as untreated, abscopal tumors when accompanied by the injection of immune system stimulants into the treated tumors. Clinical trials have begun using NPS to treat basal cell carcinoma and hepatocellular carcinoma.</p><p><strong>Methods: </strong>Murine tumors can be easily imaged when the tumor cells are injected intradermally so that they grow within the mouse skin. Pulling the skin over a translucent light post shines light through the skin and makes it easy to treat the tumor and identify the treatment zone.</p><p><strong>Results: </strong>Original research using murine tumor models is described, including melanoma, squamous cell carcinoma, lung carcinoma, breast carcinoma, and pancreatic carcinoma. The energy required to ablate these tumors has been determined with pancreatic carcinoma and lung carcinoma exhibiting 90% ablation with 240 mJ/mm<sup>3</sup>, lung carcinoma and squamous cell carcinoma requiring 360 mJ/mm<sup>3</sup>, and melanoma requiring 480 mJ/mm<sup>3</sup>. NPS therapy initiated a variable immune response indicated by the rejection of injected rechallenge tumor cells with melanoma and hepatocellular carcinoma exhibiting the strongest response and lung carcinoma, the weakest response. Following the original research data, a review of human clinical trials using NPS therapy is presented.</p><p><strong>Conclusions: </strong>NPS therapy offers a nonthermal, drug-free approach for oncology, which is limited only by applying energy to the tumor. This new immunogenic modality is just beginning to be applied in the clinic. The 87% efficacy of the first large clinical trial conducted by several medical personnel is impressive and indicates that NPS is an effective new modality for cancer treatment.</p>","PeriodicalId":29923,"journal":{"name":"Bioelectricity","volume":"6 2","pages":"72-79"},"PeriodicalIF":1.6,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304874/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141907818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioelectricityPub Date : 2024-06-12eCollection Date: 2024-06-01DOI: 10.1089/bioe.2024.0017
Richard Nuccitelli
{"title":"Discoveries in Travels from Nanovolts to Kilovolts.","authors":"Richard Nuccitelli","doi":"10.1089/bioe.2024.0017","DOIUrl":"10.1089/bioe.2024.0017","url":null,"abstract":"","PeriodicalId":29923,"journal":{"name":"Bioelectricity","volume":"6 2","pages":"126-133"},"PeriodicalIF":1.6,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304877/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141908850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioelectricityPub Date : 2024-05-23eCollection Date: 2024-09-01DOI: 10.1089/bioe.2024.0008
Richard Nuccitelli, Michelle Martinez, David Kaufman, Darius Mehregan, Lauren Johnston, William A Knape
{"title":"Nano-Pulse Stimulation Therapy Initiates Regulated Cell Death in Skin, Unlike Bovie Radiofrequency Ablation and Cryoablation.","authors":"Richard Nuccitelli, Michelle Martinez, David Kaufman, Darius Mehregan, Lauren Johnston, William A Knape","doi":"10.1089/bioe.2024.0008","DOIUrl":"10.1089/bioe.2024.0008","url":null,"abstract":"<p><strong>Background: </strong>This study describes a unique new bioelectric approach for clearing skin lesions and illustrates the clinical and histological differences between this new method and the standards of cryoablation and Bovie<sup>®</sup> radiofrequency ablation (RFA).</p><p><strong>Objectives: </strong>To determine the advantage of stimulating regulated cell death with nanosecond pulsed electric fields over the necrosis response elicited by thermal ablation modalities.</p><p><strong>Methods: </strong>Human abdominal skin was treated with cryoablation, Bovie<sup>®</sup> RFA, and nano-pulse stimulation (NPS) therapy four times before an abdominoplasty procedure was performed to collect skin for histology. The clinical appearance and corresponding histology of each treatment were documented over time and compared.</p><p><strong>Results: </strong>NPS therapy triggered regulated cell death as indicated by the appearance of activated Caspase-3 at 2 h post treatment and the absence of nuclear staining 1 day post treatment. Epidermal regeneration follows without impacting the noncellular dermis in contrast to cryoablation and Bovie<sup>®</sup> RFA which trigger necrosis and often cause scarring, inflammation, or permanent pigmentary changes. The main differences between NPS therapy and other ablation modalities are the level of fibrosis, amount of scarring, elastic fiber concentration, and inflammation. An analysis of the skin thickness 30 days after the treatment indicates that NPS-treated skin is the most similar to untreated skin but cryoablated and RF-ablated skin were 2- and 3.5-fold thicker, respectively, suggesting that they initiate necrosis rather than regulated cell death.</p><p><strong>Conclusions: </strong>We conclude that NPS therapy is a unique nonthermal modality that may be applied for clearing benign skin lesions by initiating the skin's own programmed cell death pathway instead of necrosis as used by cryoablation and Bovie<sup>®</sup> RFA.</p>","PeriodicalId":29923,"journal":{"name":"Bioelectricity","volume":"6 3","pages":"167-173"},"PeriodicalIF":1.6,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447482/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioelectricityPub Date : 2024-03-01Epub Date: 2024-03-15DOI: 10.1089/bioe.2024.0006
Vaibhav P Pai, GuangJun Zhang, Michael Levin
{"title":"\"Bioelectricity in Development, Regeneration, and Cancers\" Cell Bio 2023: A Joint Meeting of the American Society of Cell Biology and European Molecular Biology Organization December 2-6, 2023, in Boston, MA, USA.","authors":"Vaibhav P Pai, GuangJun Zhang, Michael Levin","doi":"10.1089/bioe.2024.0006","DOIUrl":"10.1089/bioe.2024.0006","url":null,"abstract":"<p><p>Cell Bio conferences-organized jointly by the American Society of Cell Biology (ASCB) and European Molecular Biology Organization (EMBO)-showcase a diverse global community of the brightest researchers in Cell Biology and in emerging interdisciplinary topics, including bioelectricity. In this report, we briefly overview the Cell Bio 2023 subgroup meeting \"Bioelectricity in Development, Regeneration, and Cancers.\" This subgroup meeting featured 12 talks (7 Principal Investigators and 5 junior scientists) exploring the role of bioelectricity in endogenous and diseased states in model systems ranging from cells in culture to single-cell organisms such as yeast all the way to mammalian systems (including tools and technology developed for exploring bioelectricity and electrotaxis in cells and tissues). The subgroup meeting concluded with a discussion on the current challenges and opportunities for the field of bioelectricity.</p>","PeriodicalId":29923,"journal":{"name":"Bioelectricity","volume":"6 1","pages":"65-68"},"PeriodicalIF":2.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10960164/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140207706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioelectricityPub Date : 2024-01-08DOI: 10.1089/bioe.2023.0026
Katja Balantič, P. Kramar, D. Miklavčič
{"title":"In Silico Numerical Model of Aluminum and Iron Dissolution During Electric Pulse Application for Electroporation","authors":"Katja Balantič, P. Kramar, D. Miklavčič","doi":"10.1089/bioe.2023.0026","DOIUrl":"https://doi.org/10.1089/bioe.2023.0026","url":null,"abstract":"","PeriodicalId":29923,"journal":{"name":"Bioelectricity","volume":"53 7","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139448276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}