Martí Bernaus, Yuly López, Sara M Soto, Adrián Bermúdez-Castel, Jose Antonio Calero, Diego Torres, Margarita Veloso, Lluis Font-Vizcarra
{"title":"脉冲灌洗和电场去除钴铬表面生物膜的体外研究。","authors":"Martí Bernaus, Yuly López, Sara M Soto, Adrián Bermúdez-Castel, Jose Antonio Calero, Diego Torres, Margarita Veloso, Lluis Font-Vizcarra","doi":"10.1089/bioe.2024.0027","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>With the increased use of metallic devices in medical disciplines, the number of potential complications has also risen. Orthopedic implant-related infections are a serious complication often requiring a combination of surgical and prolonged antibiotic treatment. Biofilms play an important role in implant-related infections, and many different strategies have been studied to remove it. The purpose of our study was to evaluate the effectiveness of electrical fields and pulse lavage to remove <i>S. epidermidis</i> biofilm from metallic surfaces used in joint arthroplasty.</p><p><strong>Methods: </strong>We compared five different models and combination treatments in an <i>in vitro</i> scenario to remove the biofilm. Five different models were compared with a model without treatment (control): (a) low-pressure pulse lavage, (b) high-pressure pulse lavage, (c) pulsed electrical fields, (d) low-pressure pulse lavage in combination with pulsed electrical fields, and (e) high-pressure pulse lavage in combination with pulsed electrical fields. Electrical fields were applied using 25 pulses at 15 V. Each pulse lasted 0.1 s and was applied every 0.5 s for a total exposure time of 12.5 s. The exposure time for irrigation was set at 25 s.</p><p><strong>Results: </strong>The most effective model for removing biofilm from cobalt-chrome surfaces was a combination of high-pressure pulse lavage and electrical fields.</p><p><strong>Conclusion: </strong>Our study results suggest the use of pulsed electrical fields is effective at removing biofilm and that our tested conditions could be translated to a clinical scenario involving infected medical devices.</p>","PeriodicalId":29923,"journal":{"name":"Bioelectricity","volume":"7 1","pages":"71-75"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12054610/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pulse Lavage and Electrical Fields to Remove Biofilms from Cobalt-Chrome Surfaces: An <i>In Vitro</i> Study.\",\"authors\":\"Martí Bernaus, Yuly López, Sara M Soto, Adrián Bermúdez-Castel, Jose Antonio Calero, Diego Torres, Margarita Veloso, Lluis Font-Vizcarra\",\"doi\":\"10.1089/bioe.2024.0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>With the increased use of metallic devices in medical disciplines, the number of potential complications has also risen. Orthopedic implant-related infections are a serious complication often requiring a combination of surgical and prolonged antibiotic treatment. Biofilms play an important role in implant-related infections, and many different strategies have been studied to remove it. The purpose of our study was to evaluate the effectiveness of electrical fields and pulse lavage to remove <i>S. epidermidis</i> biofilm from metallic surfaces used in joint arthroplasty.</p><p><strong>Methods: </strong>We compared five different models and combination treatments in an <i>in vitro</i> scenario to remove the biofilm. Five different models were compared with a model without treatment (control): (a) low-pressure pulse lavage, (b) high-pressure pulse lavage, (c) pulsed electrical fields, (d) low-pressure pulse lavage in combination with pulsed electrical fields, and (e) high-pressure pulse lavage in combination with pulsed electrical fields. Electrical fields were applied using 25 pulses at 15 V. Each pulse lasted 0.1 s and was applied every 0.5 s for a total exposure time of 12.5 s. The exposure time for irrigation was set at 25 s.</p><p><strong>Results: </strong>The most effective model for removing biofilm from cobalt-chrome surfaces was a combination of high-pressure pulse lavage and electrical fields.</p><p><strong>Conclusion: </strong>Our study results suggest the use of pulsed electrical fields is effective at removing biofilm and that our tested conditions could be translated to a clinical scenario involving infected medical devices.</p>\",\"PeriodicalId\":29923,\"journal\":{\"name\":\"Bioelectricity\",\"volume\":\"7 1\",\"pages\":\"71-75\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12054610/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectricity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/bioe.2024.0027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectricity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/bioe.2024.0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Pulse Lavage and Electrical Fields to Remove Biofilms from Cobalt-Chrome Surfaces: An In Vitro Study.
Introduction: With the increased use of metallic devices in medical disciplines, the number of potential complications has also risen. Orthopedic implant-related infections are a serious complication often requiring a combination of surgical and prolonged antibiotic treatment. Biofilms play an important role in implant-related infections, and many different strategies have been studied to remove it. The purpose of our study was to evaluate the effectiveness of electrical fields and pulse lavage to remove S. epidermidis biofilm from metallic surfaces used in joint arthroplasty.
Methods: We compared five different models and combination treatments in an in vitro scenario to remove the biofilm. Five different models were compared with a model without treatment (control): (a) low-pressure pulse lavage, (b) high-pressure pulse lavage, (c) pulsed electrical fields, (d) low-pressure pulse lavage in combination with pulsed electrical fields, and (e) high-pressure pulse lavage in combination with pulsed electrical fields. Electrical fields were applied using 25 pulses at 15 V. Each pulse lasted 0.1 s and was applied every 0.5 s for a total exposure time of 12.5 s. The exposure time for irrigation was set at 25 s.
Results: The most effective model for removing biofilm from cobalt-chrome surfaces was a combination of high-pressure pulse lavage and electrical fields.
Conclusion: Our study results suggest the use of pulsed electrical fields is effective at removing biofilm and that our tested conditions could be translated to a clinical scenario involving infected medical devices.