{"title":"Bioelectronic Therapeutics: A Revolutionary Medical Practice in Health Care.","authors":"Ishu Garg, Madhu Verma, Harish Kumar, Ravi Maurya, Tushar Negi, Prityush Jain","doi":"10.1089/bioe.2024.0039","DOIUrl":null,"url":null,"abstract":"<p><p>The emerging field of bioelectronic therapeutics unfolds great opportunities for treating numerous neurological and inflammatory conditions by utilizing the amalgamation of molecular medicine, neuroscience, engineering, and computing. These innovative treatments leverage advanced technology to precisely identify, design, and regulate electrical signaling patterns in the nervous system, addressing multiple diseases. Modifying neural signaling patterns to produce therapeutic effects at a particular organ may blur the lines between conventional medical practices. These modify the neurological behavior using electrical, magnetic, optical, and ultrasonic pulses through closed-loop systems to optimize neural behavior. The Food and Drug Administration (FDA) has approved numerous invasive and noninvasive bioelectronic devices, in the treatment of various neuronal diseases and non-neuronal diseases. Furthermore, the FDA has approved many devices for clinical studies. The field of bioelectronics encounters challenges in integrating with the health care system, including incomplete understanding of human nervous anatomy, neuronal function, membrane potential, and technological limitations. This review aims to explore bioelectronics therapeutics, their role or action in challenges to growth and their solutions, and the prospects of bioelectronic therapeutics.</p>","PeriodicalId":29923,"journal":{"name":"Bioelectricity","volume":"7 1","pages":"2-28"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12054615/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectricity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/bioe.2024.0039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The emerging field of bioelectronic therapeutics unfolds great opportunities for treating numerous neurological and inflammatory conditions by utilizing the amalgamation of molecular medicine, neuroscience, engineering, and computing. These innovative treatments leverage advanced technology to precisely identify, design, and regulate electrical signaling patterns in the nervous system, addressing multiple diseases. Modifying neural signaling patterns to produce therapeutic effects at a particular organ may blur the lines between conventional medical practices. These modify the neurological behavior using electrical, magnetic, optical, and ultrasonic pulses through closed-loop systems to optimize neural behavior. The Food and Drug Administration (FDA) has approved numerous invasive and noninvasive bioelectronic devices, in the treatment of various neuronal diseases and non-neuronal diseases. Furthermore, the FDA has approved many devices for clinical studies. The field of bioelectronics encounters challenges in integrating with the health care system, including incomplete understanding of human nervous anatomy, neuronal function, membrane potential, and technological limitations. This review aims to explore bioelectronics therapeutics, their role or action in challenges to growth and their solutions, and the prospects of bioelectronic therapeutics.