{"title":"Pitch and timbre discrimination at wave-to-spike transition in the cochlea","authors":"R. Bader","doi":"10.1121/1.5036320","DOIUrl":"https://doi.org/10.1121/1.5036320","url":null,"abstract":"A new definition of musical pitch is proposed. A Finite-Difference Time Domain (FDTM) model of the cochlea is used to calculate spike trains caused by tone complexes and by a recorded classical guitar tone. All harmonic tone complexes, musical notes, show a narrow-band Interspike Interval (ISI) pattern at the respective fundamental frequency of the tone complex. Still this fundamental frequency is not only present at the bark band holding the respective best frequency of this fundamental frequency, but rather at all bark bands driven by the tone complex partials. This is caused by drop-outs in the basically regular, periodic spike train in the respective bands. These drop-outs are caused by the energy distribution in the wave form, where time spans of low energy are not able to drive spikes. The presence of the fundamental periodicity in all bark bands can be interpreted as pitch. Contrary to pitch, timbre is represented as a wide distribution of different ISIs over bark bands. The definition of pitch is shown to also works with residue pitches. The spike drop-outs in times of low energy of the wave form also cause undertones, integer multiple subdivisions in periodicity, but in no case overtones can appear. This might explain the musical minor scale, which was proposed to be caused by undertones already in 1880 by Hugo Riemann, still until now without knowledge about any physical realization of such undertones.","PeriodicalId":298664,"journal":{"name":"arXiv: Neurons and Cognition","volume":"108 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124091538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Occipital and Left Temporal EEG Correlates of Phenomenal Consciousness","authors":"V. D. Pereira","doi":"10.1016/b978-0-12-802508-6.00018-1","DOIUrl":"https://doi.org/10.1016/b978-0-12-802508-6.00018-1","url":null,"abstract":"","PeriodicalId":298664,"journal":{"name":"arXiv: Neurons and Cognition","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124015913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Utility of Phase Models in Studying Neural Synchronization","authors":"Youngmin Park, Stewart Heitmann, G. Ermentrout","doi":"10.1002/9781119159193.ch36","DOIUrl":"https://doi.org/10.1002/9781119159193.ch36","url":null,"abstract":"Synchronized neural spiking is associated with many cognitive functions and thus, merits study for its own sake. The analysis of neural synchronization naturally leads to the study of repetitive spiking and consequently to the analysis of coupled neural oscillators. Coupled oscillator theory thus informs the synchronization of spiking neuronal networks. A crucial aspect of coupled oscillator theory is the phase response curve (PRC), which describes the impact of a perturbation to the phase of an oscillator. In neural terms, the perturbation represents an incoming synaptic potential which may either advance or retard the timing of the next spike. The phase response curves and the form of coupling between reciprocally coupled oscillators defines the phase interaction function, which in turn predicts the synchronization outcome (in-phase versus anti-phase) and the rate of convergence. We review the two classes of PRC and demonstrate the utility of the phase model in predicting synchronization in reciprocally coupled neural models. In addition, we compare the rate of convergence for all combinations of reciprocally coupled Class I and Class II oscillators. These findings predict the general synchronization outcomes of broad classes of neurons under both inhibitory and excitatory reciprocal coupling.","PeriodicalId":298664,"journal":{"name":"arXiv: Neurons and Cognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132930480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Takahisa Kishino, Sun Zhe, Roberto Marchisio, R. Micheletto
{"title":"Cross-modal codification of images with auditory stimuli: a language for the visually impaired","authors":"Takahisa Kishino, Sun Zhe, Roberto Marchisio, R. Micheletto","doi":"10.1167/17.10.1356","DOIUrl":"https://doi.org/10.1167/17.10.1356","url":null,"abstract":"In this study we describe a methodology to realize visual images cognition in the broader sense, by a cross-modal stimulation through the auditory channel. An original algorithm of conversion from bi-dimensional images to sounds has been established and tested on several subjects. Our results show that subjects where able to discriminate with a precision of 95% different sounds corresponding to different test geometric shapes. Moreover, after brief learning sessions on simple images, subjects where able to recognize among a group of 16 complex and never-trained images a single target by hearing its acoustical counterpart. Rate of recognition was found to depend on image characteristics, in 90% of the cases, subjects did better than choosing at random. This study contribute to the understanding of cross-modal perception and help for the realization of systems that use acoustical signals to help visually impaired persons to recognize objects and improve navigation","PeriodicalId":298664,"journal":{"name":"arXiv: Neurons and Cognition","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115308825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How sustainable are different levels of consciousness","authors":"E. Wiersma","doi":"10.31234/osf.io/e6497","DOIUrl":"https://doi.org/10.31234/osf.io/e6497","url":null,"abstract":"The human brain processes a wide variety of inputs and does so either consciously or subconsciously. According to the Global Workspace theory, conscious processing involves broadcasting of information to several regions of the brain and subconscious processing involves more localized processing. This theoretical paper aims to expand on some of the aspects of the Global Workspace theory: how the properties of incoming information result in it being processed subconsciously or consciously; why processing can be either be sustained or short-lived; how the Global Workspace theory may apply both to real-time sensory input as well as to internally retained information. This paper proposes that: familiar input which does not elicit intense emotions becomes processed subconsciously and such processing can be continuous and sustained; input that elicits relatively intense emotions is subjected to highly sustainable conscious processing; input can also undergo meta-conscious processing. Such processing is not very sustainable but can exert control over other cognitive processes. This paper also discusses possible benefits of regulating cognitive processes this way.","PeriodicalId":298664,"journal":{"name":"arXiv: Neurons and Cognition","volume":"266 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123109604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Determining the minimum embedding dimension for state space reconstruction through recurrence networks","authors":"K. P. Harikrishnan, R. Jacob, R. Misra, G. Ambika","doi":"10.29195/iascs.01.01.0004","DOIUrl":"https://doi.org/10.29195/iascs.01.01.0004","url":null,"abstract":"The analysis of observed time series from nonlinear systems is usually done by making a time-delay reconstruction to unfold the dynamics on a multi-dimensional state space. An important aspect of the analysis is the choice of the correct embedding dimension. The conventional procedure used for this is either the method of false nearest neighbors or the saturation of some invariant measure, such as, correlation dimension. Here we examine this issue from a complex network perspective and propose a recurrence network based measure to determine the acceptable minimum embedding dimension to be used for such analysis. The measure proposed here is based on the well known Kullback-Leibler divergence commonly used in information theory. We show that the measure is simple and direct to compute and give accurate result for short time series. To show the significance of the measure in the analysis of practical data, we present the analysis of two EEG signals as examples.","PeriodicalId":298664,"journal":{"name":"arXiv: Neurons and Cognition","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129682804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pain and Spontaneous Thought","authors":"A. Kucyi","doi":"10.1093/OXFORDHB/9780190464745.013.40","DOIUrl":"https://doi.org/10.1093/OXFORDHB/9780190464745.013.40","url":null,"abstract":"Pain is among the most salient of experiences while also, curiously, being among the most malleable. A large body of research has revealed that a multitude of explicit strategies can be used to effectively alter the attention-demanding quality of acute and chronic pains and their associated neural correlates. However, thoughts that are spontaneous, rather than actively generated, are common in daily life, and so attention to pain can often temporally fluctuate because of ongoing self-generated experiences. Classic pain theories have largely neglected to account for unconstrained fluctuations in cognition, but new studies have demonstrated the behavioral-relevance, putative neural basis, and individual variability of interactions between pain and spontaneous thoughts. In this chapter, I review behavioral studies of ongoing fluctuations in attention to pain, studies of the neural basis of spontaneous mind-wandering away from pain, and the clinical implications of this research.","PeriodicalId":298664,"journal":{"name":"arXiv: Neurons and Cognition","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116749655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Role of the Observer in Goal-Directed Behavior","authors":"I. Samengo","doi":"10.1007/978-3-319-75726-1_10","DOIUrl":"https://doi.org/10.1007/978-3-319-75726-1_10","url":null,"abstract":"","PeriodicalId":298664,"journal":{"name":"arXiv: Neurons and Cognition","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127186966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Neural Basis and Evolution of Divergent and Convergent Thought","authors":"L. Gabora","doi":"10.1017/9781316556238","DOIUrl":"https://doi.org/10.1017/9781316556238","url":null,"abstract":"This chapter takes as its departure point a neural level theory of insight that arose from studies of the sparse, distributed, content-addressable architecture of associative memory. It is argued that convergent thought is most fruitfully characterized in terms of, not the generation of a single correct solution (as it is conventionally construed), but using concepts in their most compact form by activating neural cell assemblies that respond to their most typical properties. This allows them to be deployed in a conventional manner such that effort is reserved for exploring causal relationships. Conversely, it is argued that divergent thought is most fruitfully characterized in terms of, not the generation of multiple solutions (as it is conventionally construed), but using concepts in a form that is, albeit expanded, constrained by the situation, by activating neural cell assemblies that respond to context-specific atypical properties. This allows them to be deployed in a manner that is conducive to exploring unconventional yet potentially relevant associations, and unearthing potentially useful relationships of correlation. Thus, divergent thought can involve as few as one idea. This proposal is compatible with widespread beliefs that (1) most creative tasks require not many solutions but one, yet entail both divergent and convergent thinking, and (2) not all problems with multiple solutions require creative thinking, and conversely, some problems with single solution do require creative thought. The chapter discusses how the ability to shift between convergent and divergent modes of thought may have evolved, and it concludes with educational and vocational implications.","PeriodicalId":298664,"journal":{"name":"arXiv: Neurons and Cognition","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121172326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Possible Role for Entropy in Creative Cognition","authors":"L. Gabora","doi":"10.3390/ecea-3-E001","DOIUrl":"https://doi.org/10.3390/ecea-3-E001","url":null,"abstract":"This paper states the case for applying the conceptual and analytic tools associated with the study of entropy in physical systems to cognition, focusing on creative cognition. It is proposed that minds modify their contents and adapt to their environments to minimize psychological entropy: arousal-provoking uncertainty, which can be experienced negatively as anxiety, or positively as a wellspring for creativity (or both). Thus, intrinsically motivated creativity begins with detection of high psychological entropy material (e.g., a question or inconsistency), which provokes uncertainty and is arousal-inducing. This material is recursively considering from new contexts until it is sufficiently restructured that arousal dissipates and entropy reaches an acceptable level. Restructuring involves neural synchrony and dynamic binding, and may be facilitated by temporarily shifting to a more associative mode of thought. The creative outcome may similarly induce restructuring in others, and thereby contribute to the cultural evolution of more nuanced understandings. Thus, the concept of entropy could play a unifying role in cognitive science as a driver of thought and action, and in cultural studies as the driver of the creative innovations that fuel cultural evolution. The paper concludes with an invitation for cross-disciplinary exploration of this potential new arena of entropy studies.","PeriodicalId":298664,"journal":{"name":"arXiv: Neurons and Cognition","volume":"121 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130259715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}