{"title":"相位模型在神经同步研究中的应用","authors":"Youngmin Park, Stewart Heitmann, G. Ermentrout","doi":"10.1002/9781119159193.ch36","DOIUrl":null,"url":null,"abstract":"Synchronized neural spiking is associated with many cognitive functions and thus, merits study for its own sake. The analysis of neural synchronization naturally leads to the study of repetitive spiking and consequently to the analysis of coupled neural oscillators. Coupled oscillator theory thus informs the synchronization of spiking neuronal networks. A crucial aspect of coupled oscillator theory is the phase response curve (PRC), which describes the impact of a perturbation to the phase of an oscillator. In neural terms, the perturbation represents an incoming synaptic potential which may either advance or retard the timing of the next spike. The phase response curves and the form of coupling between reciprocally coupled oscillators defines the phase interaction function, which in turn predicts the synchronization outcome (in-phase versus anti-phase) and the rate of convergence. We review the two classes of PRC and demonstrate the utility of the phase model in predicting synchronization in reciprocally coupled neural models. In addition, we compare the rate of convergence for all combinations of reciprocally coupled Class I and Class II oscillators. These findings predict the general synchronization outcomes of broad classes of neurons under both inhibitory and excitatory reciprocal coupling.","PeriodicalId":298664,"journal":{"name":"arXiv: Neurons and Cognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"The Utility of Phase Models in Studying Neural Synchronization\",\"authors\":\"Youngmin Park, Stewart Heitmann, G. Ermentrout\",\"doi\":\"10.1002/9781119159193.ch36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synchronized neural spiking is associated with many cognitive functions and thus, merits study for its own sake. The analysis of neural synchronization naturally leads to the study of repetitive spiking and consequently to the analysis of coupled neural oscillators. Coupled oscillator theory thus informs the synchronization of spiking neuronal networks. A crucial aspect of coupled oscillator theory is the phase response curve (PRC), which describes the impact of a perturbation to the phase of an oscillator. In neural terms, the perturbation represents an incoming synaptic potential which may either advance or retard the timing of the next spike. The phase response curves and the form of coupling between reciprocally coupled oscillators defines the phase interaction function, which in turn predicts the synchronization outcome (in-phase versus anti-phase) and the rate of convergence. We review the two classes of PRC and demonstrate the utility of the phase model in predicting synchronization in reciprocally coupled neural models. In addition, we compare the rate of convergence for all combinations of reciprocally coupled Class I and Class II oscillators. These findings predict the general synchronization outcomes of broad classes of neurons under both inhibitory and excitatory reciprocal coupling.\",\"PeriodicalId\":298664,\"journal\":{\"name\":\"arXiv: Neurons and Cognition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Neurons and Cognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/9781119159193.ch36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Neurons and Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119159193.ch36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Utility of Phase Models in Studying Neural Synchronization
Synchronized neural spiking is associated with many cognitive functions and thus, merits study for its own sake. The analysis of neural synchronization naturally leads to the study of repetitive spiking and consequently to the analysis of coupled neural oscillators. Coupled oscillator theory thus informs the synchronization of spiking neuronal networks. A crucial aspect of coupled oscillator theory is the phase response curve (PRC), which describes the impact of a perturbation to the phase of an oscillator. In neural terms, the perturbation represents an incoming synaptic potential which may either advance or retard the timing of the next spike. The phase response curves and the form of coupling between reciprocally coupled oscillators defines the phase interaction function, which in turn predicts the synchronization outcome (in-phase versus anti-phase) and the rate of convergence. We review the two classes of PRC and demonstrate the utility of the phase model in predicting synchronization in reciprocally coupled neural models. In addition, we compare the rate of convergence for all combinations of reciprocally coupled Class I and Class II oscillators. These findings predict the general synchronization outcomes of broad classes of neurons under both inhibitory and excitatory reciprocal coupling.