ACS Physical Chemistry Au最新文献

筛选
英文 中文
Lead-Free Cs2AgBiCl6 Double Perovskite: Experimental and Theoretical Insights into the Self-Trapping for Optoelectronic Applications 无铅 Cs2AgBiCl6 双包晶:光电应用中自捕获的实验和理论启示
ACS Physical Chemistry Au Pub Date : 2024-07-05 DOI: 10.1021/acsphyschemau.4c00008
Swati N. Rahane, Ganesh K. Rahane, Animesh Mandal, Yogesh Jadhav, Akshat Godha, Avinash Rokade, Shruti Shah, Yogesh Hase, Ashish Waghmare, Nilesh G. Saykar, Anurag Roy, Kranti N. Salgaonkar, Deepak Dubal, Surendra K. Makineni, Nelson Y. Dzade, Sandesh R. Jadkar, Sachin R. Rondiya
{"title":"Lead-Free Cs2AgBiCl6 Double Perovskite: Experimental and Theoretical Insights into the Self-Trapping for Optoelectronic Applications","authors":"Swati N. Rahane, Ganesh K. Rahane, Animesh Mandal, Yogesh Jadhav, Akshat Godha, Avinash Rokade, Shruti Shah, Yogesh Hase, Ashish Waghmare, Nilesh G. Saykar, Anurag Roy, Kranti N. Salgaonkar, Deepak Dubal, Surendra K. Makineni, Nelson Y. Dzade, Sandesh R. Jadkar, Sachin R. Rondiya","doi":"10.1021/acsphyschemau.4c00008","DOIUrl":"https://doi.org/10.1021/acsphyschemau.4c00008","url":null,"abstract":"Lead-free double perovskites (DPs) will emerge as viable and environmentally safe substitutes for Pb-halide perovskites, demonstrating stability and nontoxicity if their optoelectronic property is greatly improved. Doping has been experimentally validated as a powerful tool for enhancing optoelectronic properties and concurrently reducing the defect state density in DP materials. Fundamental understanding of the optical properties of DPs, particularly the self-trapped exciton (STEs) dynamics, plays a critical role in a range of optoelectronic applications. Our study investigates how Fe doping influences the structural and optical properties of Cs<sub>2</sub>AgBiCl<sub>6</sub> DPs by understanding their STEs dynamics, which is currently lacking in the literature. A combined experimental–computational approach is employed to investigate the optoelectronic properties of pure and doped Cs<sub>2</sub>AgBiCl<sub>6</sub> (Fe–Cs<sub>2</sub>AgBiCl<sub>6</sub>) perovskites. Successful incorporation of Fe<sup>3+</sup> ions is confirmed by X-ray diffraction and Raman spectroscopy. Moreover, the Fe–Cs<sub>2</sub>AgBiCl<sub>6</sub> DPs exhibit strong absorption from below 400 nm up to 700 nm, indicating sub-band gap state transitions originating from surface defects. Photoluminescence (PL) analysis demonstrates a significant enhancement in the PL intensity, attributed to an increased radiative recombination rate and higher STE density. The radiative kinetics and average lifetime are investigated by the time-resolved PL (TRPL) method; in addition, temperature-dependent PL measurements provide valuable insights into activation energy and exciton–phonon coupling strength. Our findings will not only deepen our understanding of charge carrier dynamics associated with STEs but also pave the way for the design of some promising perovskite materials for use in optoelectronics and photocatalysis.","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141548010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure-Guided Antiviral Peptides Identification Targeting the HIV-1 Integrase 以 HIV-1 整合酶为目标的结构引导型抗病毒肽鉴定
IF 3.7
ACS Physical Chemistry Au Pub Date : 2024-07-05 DOI: 10.1021/acsphyschemau.4c0000610.1021/acsphyschemau.4c00006
Md. Shahadat Hossain, Md. Siddik Alom, Mohammad Salauddin Kader, Mohammed Akhter Hossain and Mohammad A. Halim*, 
{"title":"Structure-Guided Antiviral Peptides Identification Targeting the HIV-1 Integrase","authors":"Md. Shahadat Hossain,&nbsp;Md. Siddik Alom,&nbsp;Mohammad Salauddin Kader,&nbsp;Mohammed Akhter Hossain and Mohammad A. Halim*,&nbsp;","doi":"10.1021/acsphyschemau.4c0000610.1021/acsphyschemau.4c00006","DOIUrl":"https://doi.org/10.1021/acsphyschemau.4c00006https://doi.org/10.1021/acsphyschemau.4c00006","url":null,"abstract":"<p >HIV-1 integrase (IN), a major protein in the HIV life cycle responsible for integrating viral cDNA into the host DNA, represents a promising drug target. Small peptides have emerged as antiviral therapeutics for HIV because of their facile synthesis, highly selective nature, and fewer side effects. However, selecting the best candidates from a vast pool of peptides is a daunting task. In this study, multistep virtual screening was employed to identify potential peptides from a list of 280 HIV inhibitory peptides. Initially, 80 peptides were selected based on their minimum inhibitory concentrations (MIC). Then, molecular docking was performed to evaluate their binding scores compared to HIP000 and HIP00N which are experimentally validated HIV-1 integrase binding peptides that were used as a positive and negative control, respectively. The top-scoring docked complexes, namely, IN-HIP1113, IN-HIP1140, IN-HIP1142, IN-HIP678, IN-HIP776, and IN-HIP777, were subjected to initial 500 ns molecular dynamics (MD) simulations. Subsequently, HIP776, HIP777, and HIP1142 were selected for an in-depth mechanistic study of peptide interactions, with multiple simulations conducted for each complex spanning one microsecond. Independent simulations of the peptides, along with comparisons to the bound state, were performed to elucidate the conformational dynamics of the peptides. These peptides exhibit strong interactions with specific residues, as revealed by snapshot interaction analysis. Notably, LYS159, LYS156, VAL150, and GLU69 residues are prominently involved in these interactions. Additionally, residue-based binding free energy (BFE) calculations highlight the significance of HIS67, GLN148, GLN146, and SER147 residues within the binding pocket. Furthermore, the structure–activity relationship (SAR) analysis demonstrated that aromatic amino acids and the overall volume of peptides are the two major contributors to the docking scores. The best peptides will be validated experimentally by incorporating SAR properties, aiming to develop them as therapeutic agents and structural models for future peptide-based HIV-1 drug design, addressing the urgent need for effective HIV treatments.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.4c00006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142318362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure-Guided Antiviral Peptides Identification Targeting the HIV-1 Integrase 以 HIV-1 整合酶为目标的结构引导型抗病毒肽鉴定
ACS Physical Chemistry Au Pub Date : 2024-07-05 DOI: 10.1021/acsphyschemau.4c00006
Md. Shahadat Hossain, Md. Siddik Alom, Mohammad Salauddin Kader, Mohammed Akhter Hossain, Mohammad A. Halim
{"title":"Structure-Guided Antiviral Peptides Identification Targeting the HIV-1 Integrase","authors":"Md. Shahadat Hossain, Md. Siddik Alom, Mohammad Salauddin Kader, Mohammed Akhter Hossain, Mohammad A. Halim","doi":"10.1021/acsphyschemau.4c00006","DOIUrl":"https://doi.org/10.1021/acsphyschemau.4c00006","url":null,"abstract":"HIV-1 integrase (IN), a major protein in the HIV life cycle responsible for integrating viral cDNA into the host DNA, represents a promising drug target. Small peptides have emerged as antiviral therapeutics for HIV because of their facile synthesis, highly selective nature, and fewer side effects. However, selecting the best candidates from a vast pool of peptides is a daunting task. In this study, multistep virtual screening was employed to identify potential peptides from a list of 280 HIV inhibitory peptides. Initially, 80 peptides were selected based on their minimum inhibitory concentrations (MIC). Then, molecular docking was performed to evaluate their binding scores compared to HIP000 and HIP00N which are experimentally validated HIV-1 integrase binding peptides that were used as a positive and negative control, respectively. The top-scoring docked complexes, namely, IN-HIP1113, IN-HIP1140, IN-HIP1142, IN-HIP678, IN-HIP776, and IN-HIP777, were subjected to initial 500 ns molecular dynamics (MD) simulations. Subsequently, HIP776, HIP777, and HIP1142 were selected for an in-depth mechanistic study of peptide interactions, with multiple simulations conducted for each complex spanning one microsecond. Independent simulations of the peptides, along with comparisons to the bound state, were performed to elucidate the conformational dynamics of the peptides. These peptides exhibit strong interactions with specific residues, as revealed by snapshot interaction analysis. Notably, LYS159, LYS156, VAL150, and GLU69 residues are prominently involved in these interactions. Additionally, residue-based binding free energy (BFE) calculations highlight the significance of HIS67, GLN148, GLN146, and SER147 residues within the binding pocket. Furthermore, the structure–activity relationship (SAR) analysis demonstrated that aromatic amino acids and the overall volume of peptides are the two major contributors to the docking scores. The best peptides will be validated experimentally by incorporating SAR properties, aiming to develop them as therapeutic agents and structural models for future peptide-based HIV-1 drug design, addressing the urgent need for effective HIV treatments.","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141548005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optically Gated Dissociation of a Heptazinyl Radical Liberates H• through a Reactive πσ* State 七嗪基自由基的光控解离通过反应πσ*态释放 H-
ACS Physical Chemistry Au Pub Date : 2024-07-05 DOI: 10.1021/acsphyschemau.4c00030
Liam Wrigley, Doyk Hwang, Sebastian V. Pios, Cody W. Schlenker
{"title":"Optically Gated Dissociation of a Heptazinyl Radical Liberates H• through a Reactive πσ* State","authors":"Liam Wrigley, Doyk Hwang, Sebastian V. Pios, Cody W. Schlenker","doi":"10.1021/acsphyschemau.4c00030","DOIUrl":"https://doi.org/10.1021/acsphyschemau.4c00030","url":null,"abstract":"Using trianisole heptazine (TAHz) as a monomeric analogue for carbon nitride, we performed ultrafast pump–photolysis–probe transient absorption (TA) spectroscopy on the intermediate TAHzH<sup>•</sup> heptazinyl radical produced from an excited state PCET reaction with 4-methoxyphenol (MeOPhOH). Our results demonstrate an optically gated photolysis that releases H<sup>•</sup> and regenerates ground state TAHz. The TAHzH<sup>•</sup> radical signature at 520 nm had a lifetime of 7.0 ps, and its photodissociation by the photolysis pulse is clearly demonstrated by the ground state bleach recovery of the closed-shell neutral TAHz. This behavior has been previously predicted as evidence of a dissociative πσ* state. For the first time, we experimentally demonstrate photolysis of the TAHzH<sup>•</sup> heptazinyl radical through a repulsive πσ* state. This is a critical feature of the proposed reaction mechanisms involving water oxidation and CO<sub>2</sub> reduction.","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141552709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lead-Free Cs2AgBiCl6 Double Perovskite: Experimental and Theoretical Insights into the Self-Trapping for Optoelectronic Applications 无铅 Cs2AgBiCl6 双包晶:光电应用中自捕获的实验和理论启示
IF 3.7
ACS Physical Chemistry Au Pub Date : 2024-07-05 DOI: 10.1021/acsphyschemau.4c0000810.1021/acsphyschemau.4c00008
Swati N. Rahane, Ganesh K. Rahane, Animesh Mandal, Yogesh Jadhav, Akshat Godha, Avinash Rokade, Shruti Shah, Yogesh Hase, Ashish Waghmare, Nilesh G. Saykar, Anurag Roy, Kranti N. Salgaonkar, Deepak Dubal, Surendra K. Makineni, Nelson Y. Dzade*, Sandesh R. Jadkar* and Sachin R. Rondiya*, 
{"title":"Lead-Free Cs2AgBiCl6 Double Perovskite: Experimental and Theoretical Insights into the Self-Trapping for Optoelectronic Applications","authors":"Swati N. Rahane,&nbsp;Ganesh K. Rahane,&nbsp;Animesh Mandal,&nbsp;Yogesh Jadhav,&nbsp;Akshat Godha,&nbsp;Avinash Rokade,&nbsp;Shruti Shah,&nbsp;Yogesh Hase,&nbsp;Ashish Waghmare,&nbsp;Nilesh G. Saykar,&nbsp;Anurag Roy,&nbsp;Kranti N. Salgaonkar,&nbsp;Deepak Dubal,&nbsp;Surendra K. Makineni,&nbsp;Nelson Y. Dzade*,&nbsp;Sandesh R. Jadkar* and Sachin R. Rondiya*,&nbsp;","doi":"10.1021/acsphyschemau.4c0000810.1021/acsphyschemau.4c00008","DOIUrl":"https://doi.org/10.1021/acsphyschemau.4c00008https://doi.org/10.1021/acsphyschemau.4c00008","url":null,"abstract":"<p >Lead-free double perovskites (DPs) will emerge as viable and environmentally safe substitutes for Pb-halide perovskites, demonstrating stability and nontoxicity if their optoelectronic property is greatly improved. Doping has been experimentally validated as a powerful tool for enhancing optoelectronic properties and concurrently reducing the defect state density in DP materials. Fundamental understanding of the optical properties of DPs, particularly the self-trapped exciton (STEs) dynamics, plays a critical role in a range of optoelectronic applications. Our study investigates how Fe doping influences the structural and optical properties of Cs<sub>2</sub>AgBiCl<sub>6</sub> DPs by understanding their STEs dynamics, which is currently lacking in the literature. A combined experimental–computational approach is employed to investigate the optoelectronic properties of pure and doped Cs<sub>2</sub>AgBiCl<sub>6</sub> (Fe–Cs<sub>2</sub>AgBiCl<sub>6</sub>) perovskites. Successful incorporation of Fe<sup>3+</sup> ions is confirmed by X-ray diffraction and Raman spectroscopy. Moreover, the Fe–Cs<sub>2</sub>AgBiCl<sub>6</sub> DPs exhibit strong absorption from below 400 nm up to 700 nm, indicating sub-band gap state transitions originating from surface defects. Photoluminescence (PL) analysis demonstrates a significant enhancement in the PL intensity, attributed to an increased radiative recombination rate and higher STE density. The radiative kinetics and average lifetime are investigated by the time-resolved PL (TRPL) method; in addition, temperature-dependent PL measurements provide valuable insights into activation energy and exciton–phonon coupling strength. Our findings will not only deepen our understanding of charge carrier dynamics associated with STEs but also pave the way for the design of some promising perovskite materials for use in optoelectronics and photocatalysis.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.4c00008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142318361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Vision for the Future of Materials Innovation and How to Fast-Track It with Services 材料创新的未来愿景以及如何利用服务快速实现创新
IF 3.7
ACS Physical Chemistry Au Pub Date : 2024-06-12 DOI: 10.1021/acsphyschemau.4c0000910.1021/acsphyschemau.4c00009
Lorenz J. Falling*, 
{"title":"A Vision for the Future of Materials Innovation and How to Fast-Track It with Services","authors":"Lorenz J. Falling*,&nbsp;","doi":"10.1021/acsphyschemau.4c0000910.1021/acsphyschemau.4c00009","DOIUrl":"https://doi.org/10.1021/acsphyschemau.4c00009https://doi.org/10.1021/acsphyschemau.4c00009","url":null,"abstract":"<p >Today, we witness how our scientific ecosystem tries to accommodate a new form of intelligence, artificial intelligence (AI). To make the most of AI in materials science, we need to make the data from computational and laboratory experiments machine-readable, but while that works well for computational experiments, integrating laboratory hardware into a digital workflow seems to be a formidable barrier toward that goal. This paper explores measurement services as a way to lower this barrier. I envision the Entity for Multivariate Material Analysis (EMMA), a centralized service that offers measurement bundles tailored for common research needs. EMMA’s true strength, however, lies in its software ecosystem to treat, simulate, and store the measured data. Its close integration of measurements and their simulation not only produces metadata-rich experimental data but also provides a self-consistent framework that links the sample with a snapshot of its digital twin. If EMMA was to materialize, its database of experimental data connected to digital twins could serve as the fuel for physics-informed machine learning and a trustworthy horizon of expectations for material properties. This drives material innovation since knowing the statistics helps find the exceptional. This is the EMMA approach: fast-tracking material innovation by integrated measurement and software services.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.4c00009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142318365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Vision for the Future of Materials Innovation and How to Fast-Track It with Services 材料创新的未来愿景以及如何利用服务快速实现创新
ACS Physical Chemistry Au Pub Date : 2024-06-12 DOI: 10.1021/acsphyschemau.4c00009
L. Falling
{"title":"A Vision for the Future of Materials Innovation and How to Fast-Track It with Services","authors":"L. Falling","doi":"10.1021/acsphyschemau.4c00009","DOIUrl":"https://doi.org/10.1021/acsphyschemau.4c00009","url":null,"abstract":"","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141352765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying Microsecond Solution-Phase Conformational Dynamics of a DNA Hairpin at the Single-Molecule Level 在单分子水平量化 DNA 发夹的微秒级溶液相构象动力学
IF 3.7
ACS Physical Chemistry Au Pub Date : 2024-05-29 DOI: 10.1021/acsphyschemau.3c0006610.1021/acsphyschemau.3c00066
Alexander K. Foote, Kunihiko Ishii, Brendan Cullinane, Tahei Tahara and Randall H. Goldsmith*, 
{"title":"Quantifying Microsecond Solution-Phase Conformational Dynamics of a DNA Hairpin at the Single-Molecule Level","authors":"Alexander K. Foote,&nbsp;Kunihiko Ishii,&nbsp;Brendan Cullinane,&nbsp;Tahei Tahara and Randall H. Goldsmith*,&nbsp;","doi":"10.1021/acsphyschemau.3c0006610.1021/acsphyschemau.3c00066","DOIUrl":"https://doi.org/10.1021/acsphyschemau.3c00066https://doi.org/10.1021/acsphyschemau.3c00066","url":null,"abstract":"<p >Quantifying the rapid conformational dynamics of biological systems is fundamental to understanding the mechanism. However, biomolecules are complex, often containing static and dynamic heterogeneity, thus motivating the use of single-molecule methods, particularly those that can operate in solution. In this study, we measure microsecond conformational dynamics of solution-phase DNA hairpins at the single-molecule level using an anti-Brownian electrokinetic (ABEL) trap. Different conformational states were distinguished by their fluorescence lifetimes, and kinetic parameters describing transitions between these states were determined using two-dimensional fluorescence lifetime correlation (2DFLCS) analysis. Rather than combining fluorescence signals from the entire data set ensemble, long observation times of individual molecules allowed ABEL-2DFLCS to be performed on each molecule independently, yielding the underlying distribution of the system’s kinetic parameters. ABEL-2DFLCS on the DNA hairpins resolved an underlying heterogeneity of fluorescence lifetimes and provided signatures of two-state exponential dynamics with rapid (&lt;millisecond) transition times between states without observation of the substantially stretched exponential kinetics that had been observed in previous measurements on diffusing molecules. Numerical simulations were performed to validate the accuracy of this technique and the effects the underlying heterogeneity has on the analysis. Finally, ABEL-2DFLCS was performed on a mixture of hairpins and used to resolve their kinetic data.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.3c00066","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141959271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying Microsecond Solution-Phase Conformational Dynamics of a DNA Hairpin at the Single-Molecule Level 在单分子水平量化 DNA 发夹的微秒级溶液相构象动力学
ACS Physical Chemistry Au Pub Date : 2024-05-29 DOI: 10.1021/acsphyschemau.3c00066
Alexander K. Foote, Kunihiko Ishii, Brendan Cullinane, Tahei Tahara, Randall H. Goldsmith
{"title":"Quantifying Microsecond Solution-Phase Conformational Dynamics of a DNA Hairpin at the Single-Molecule Level","authors":"Alexander K. Foote, Kunihiko Ishii, Brendan Cullinane, Tahei Tahara, Randall H. Goldsmith","doi":"10.1021/acsphyschemau.3c00066","DOIUrl":"https://doi.org/10.1021/acsphyschemau.3c00066","url":null,"abstract":"Quantifying the rapid conformational dynamics of biological systems is fundamental to understanding the mechanism. However, biomolecules are complex, often containing static and dynamic heterogeneity, thus motivating the use of single-molecule methods, particularly those that can operate in solution. In this study, we measure microsecond conformational dynamics of solution-phase DNA hairpins at the single-molecule level using an anti-Brownian electrokinetic (ABEL) trap. Different conformational states were distinguished by their fluorescence lifetimes, and kinetic parameters describing transitions between these states were determined using two-dimensional fluorescence lifetime correlation (2DFLCS) analysis. Rather than combining fluorescence signals from the entire data set ensemble, long observation times of individual molecules allowed ABEL-2DFLCS to be performed on each molecule independently, yielding the underlying distribution of the system’s kinetic parameters. ABEL-2DFLCS on the DNA hairpins resolved an underlying heterogeneity of fluorescence lifetimes and provided signatures of two-state exponential dynamics with rapid (&lt;millisecond) transition times between states without observation of the substantially stretched exponential kinetics that had been observed in previous measurements on diffusing molecules. Numerical simulations were performed to validate the accuracy of this technique and the effects the underlying heterogeneity has on the analysis. Finally, ABEL-2DFLCS was performed on a mixture of hairpins and used to resolve their kinetic data.","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141197155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developments in Raman Spectromicroscopy for Strengthening Materials and Natural Science Research: Shaping the Future of Physical Chemistry 拉曼光谱在加强材料和自然科学研究方面的发展:塑造物理化学的未来
ACS Physical Chemistry Au Pub Date : 2024-05-27 DOI: 10.1021/acsphyschemau.4c00017
Devesh K. Pathak, Chanchal Rani, Aanchal Sati, Rajesh Kumar
{"title":"Developments in Raman Spectromicroscopy for Strengthening Materials and Natural Science Research: Shaping the Future of Physical Chemistry","authors":"Devesh K. Pathak, Chanchal Rani, Aanchal Sati, Rajesh Kumar","doi":"10.1021/acsphyschemau.4c00017","DOIUrl":"https://doi.org/10.1021/acsphyschemau.4c00017","url":null,"abstract":"Spectroscopic techniques, especially Raman spectroscopy, cover a large subset in the teaching and research domain of physical chemistry. Raman spectroscopy, and other Raman based techniques, establishes itself as a powerful analytical tool with diverse applications across scientific, industrial, and natural science (including biology and pharmacy) fields and helps in the progress of physical chemistry. Recent advancements and future prospects in Raman spectroscopy, focusing on key areas of innovation and potential directions for research and development, have been highlighted here along with some of the challenges that need to be addressed to prepare Raman based techniques for the future. Significant progress has been made in enhancing the sensitivity, spatial resolution, and time resolution of Raman spectroscopy techniques. Raman spectroscopy has applications in all areas of research but especially in biomedical applications, where Raman spectroscopy holds a great promise for noninvasive or minimally invasive diagnosis, tissue imaging, and drug monitoring. Improvements in instrumentation and laser technologies have enabled researchers to achieve higher sensitivity levels, investigate smaller sample areas with improved spatial resolution, and capture dynamic processes with high temporal resolution. These advancements have paved the way for a deeper understanding of molecular structure, chemical composition, and dynamic behavior in various materials and biological systems. It is high time that we consider whether Raman based techniques are ready to be improved based on the strength of the current era of AI/ML and quantum technology.","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141197133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信