Guang‐Xing Liang, Chuan‐Hao Li, Jun Zhao, Yi Fu, Zi‐Xuan Yu, Zhuang‐Hao Zheng, Zheng‐Hua Su, Ping Fan, Xiang‐Hua Zhang, Jing‐Ting Luo, Liming Ding, Shuo Chen
{"title":"Self‐powered broadband kesterite photodetector with ultrahigh specific detectivity for weak light applications","authors":"Guang‐Xing Liang, Chuan‐Hao Li, Jun Zhao, Yi Fu, Zi‐Xuan Yu, Zhuang‐Hao Zheng, Zheng‐Hua Su, Ping Fan, Xiang‐Hua Zhang, Jing‐Ting Luo, Liming Ding, Shuo Chen","doi":"10.1002/sus2.160","DOIUrl":"https://doi.org/10.1002/sus2.160","url":null,"abstract":"Abstract Kesterite Cu 2 ZnSn(S,Se) 4 (CZTSSe) is a promising candidate for photodetector (PD) applications thanks to its excellent optoelectronic properties. In this work, a green solution‐ processed spin coating and selenization‐processed thermodynamic or kinetic growth of high‐quality narrow bandgap kesterite CZTSSe thin film is developed. A self‐powered CZTSSe/CdS thin‐film PD is then successfully fabricated. Under optimization of light absorber and heterojunction interface, especially tailoring the defect and carrier kinetics, it can achieve broadband response from 300 to 1300 nm, accompanied with a high responsivity of 1.37 A/W, specific detectivity ( D *) up to 4.0 × 10 14 Jones under 5 nW/cm 2 , a linear dynamic range (LDR) of 126 dB, and a maximum I light / I dark ratio of 1.3 × 10 8 within the LDR, and ultrafast response speed (rise/decay time of 16 ns/85 ns), representing the leading‐level performance to date, which is superior to those of commercial and well‐researched photodiodes. Additionally, an imaging system with a 905 nm laser is built for weak light response evaluation, and can respond to 718 pW weak light and infrared imaging at a wavelength as low as 5 nW/cm 2 . It has also been employed for photoplethysmography detection of pulsating signals at both the finger and wrist, presenting obvious arterial blood volume changes, demonstrating great application potential in broadband and weak light photodetection scenarios.","PeriodicalId":29781,"journal":{"name":"SusMat","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135769108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research progress on sustainability of key tire materials","authors":"Sai Deng, Ruixin Chen, Shiyu Duan, Qingxiu Jia, Xinmin Hao, Liqun Zhang","doi":"10.1002/sus2.159","DOIUrl":"https://doi.org/10.1002/sus2.159","url":null,"abstract":"Abstract In recent years, countries worldwide have engaged actively in the research and development of green and sustainable materials in the face of the increasing depletion of petroleum resources, the need to reduce material waste, and the environmental pollution caused by the various types of waste. In the tire industry, the key materials for the various components of tires are mostly dependent on petroleum resources. Development of green tires and green processing technologies using sustainable materials is an important development direction for the future of the tire industry, and many tire‐manufacturing companies have proposed their visions for the development of eco‐friendly tires. Rubber, cord fabric, and additives are the main materials used in tire manufacturing. This article summarizes the research status of the green materials that can meet the requirements of environmental friendliness and sustainability, replace traditional materials, and reduce petroleum resource consumption in existing tire production. These materials mainly include natural rubber or bio‐based synthetic rubber, green renewable cord fabrics, and green processing additives. The prospects for the application of these new green materials in tire manufacturing are also discussed.","PeriodicalId":29781,"journal":{"name":"SusMat","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136016160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent advances of carbon nanotubes in perovskite solar cells","authors":"Xian‐Gang Hu, Zhenhua Lin, Liming Ding, Jingjing Chang","doi":"10.1002/sus2.158","DOIUrl":"https://doi.org/10.1002/sus2.158","url":null,"abstract":"Abstract Perovskite solar cells (PSCs) have exhibited tremendous potential in photovoltaic fields owing to their appreciable performance and simple fabrication. Nevertheless, device performances are still required to be further improved before commercial applications. As one‐dimensional materials, carbon nanotubes (CNTs) have been utilized to regulate stability and efficiency of PSCs because of their excellent chemical stability, flexibility, as well as tunable optical and electrical characteristics. In this review, we comprehensively summarize various functions of CNTs in PSCs, such as transparent electrodes, hole/electron‐transport layers, counter electrodes, perovskite additives, and interlayers. Additionally, applications of CNTs toward the advancement of flexible and semitransparent PSCs are provided. Finally, we preview the challenges and research interests of using CNTs in high‐efficiency and stable perovskite devices.","PeriodicalId":29781,"journal":{"name":"SusMat","volume":"189 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135154822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanru Yin, Dongdong Xiao, Shuai Wu, Eman Husni Da'as, Yueyuan Gu, Lei Bi
{"title":"A real proton‐conductive, robust, and cobalt‐free cathode for proton‐conducting solid oxide fuel cells with exceptional performance","authors":"Yanru Yin, Dongdong Xiao, Shuai Wu, Eman Husni Da'as, Yueyuan Gu, Lei Bi","doi":"10.1002/sus2.156","DOIUrl":"https://doi.org/10.1002/sus2.156","url":null,"abstract":"Abstract The development of proton, oxygen‐ion, and electron mixed conducting materials, known as triple‐conduction materials, as cathodes for proton‐conducting solid oxide fuel cells (H‐SOFCs) is highly desired because they can increase fuel cell performance by extending the reaction active area. Although oxygen‐ion and electron conductions can be measured directly, proton conduction in these oxides is usually estimated indirectly. Because of the instability of cathode materials in a reducing environment, direct measurement of proton conduction in cathode oxide is difficult. The La 0.8 Sr 0.2 Sc 0.5 Fe 0.5 O 3– δ (LSSF) cathode material is proposed for H‐SOFCs in this study, which can survive in an H 2 ‐containing atmosphere, allowing measurement of proton conduction in LSSF by hydrogen permeation technology. Furthermore, LSSF is discovered to be a unique proton and electron mixed‐conductive material with limited oxygen diffusion capability that is specifically designed for H‐SOFCs. The LSSF is an appealing cathode choice for H‐SOFCs due to its outstanding CO 2 tolerance and matched thermal expansion coefficient, producing a record‐high performance of 2032 mW cm −2 at 700°C and good long‐term stability under operational conditions. The current study reveals that a new type of proton–electron mixed conducting cathode can provide promising performance for H‐SOFCs, opening the way for developing high‐performance cathodes.","PeriodicalId":29781,"journal":{"name":"SusMat","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134990114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A waterproof, environment‐friendly, multifunctional, and stretchable thermoelectric fabric for continuous self‐powered personal health signal collection at high humidity","authors":"Xinyang He, Bingyi Li, Jiaxin Cai, Honghua Zhang, Chengzu Li, Xinxin Li, Jianyong Yu, Liming Wang, Xiaohong Qin","doi":"10.1002/sus2.155","DOIUrl":"https://doi.org/10.1002/sus2.155","url":null,"abstract":"Abstract Thermoelectric sensors have attracted increasing attention in smart wearables due to the recognition of multiple signals in self‐powered mode. However, present thermoelectric devices show disadvantages of low durability, weak wearability, and complex preparation processes and are susceptible to moisture in the microenvironment of the human body, which hinders their further application in wearable electronics. Herein, we prepared a new thermoelectric fabric with thermoplastic polyurethane/carbon nanotubes (TPU/CNTs) by combining vacuum filtration and electrospraying techniques. Electrospraying TPU microsphere coating with good biocompatibility and environmental friendliness made the fabric worn directly and exhibits preferred water resistance, mechanical durability, and stability even after being bent 4000 times, stretched 1000 times, and washed 1000 times. Moreover, this fabric showed a Seebeck coefficient of 49 μV K −1 and strain range of 250% and could collect signals well and avoided interference from moisture. Based on the biocompatibility and safety of the fabric, it can be fabricated into devices and mounted on the human face and elbow for long‐term and continuous collection of data on the body's motion and breathing simultaneously to provide collaborative support information. This thermoelectric fabric‐based sensor will show great potential in advanced smart wearables for health monitoring, motion detection, and human–computer interaction.","PeriodicalId":29781,"journal":{"name":"SusMat","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135981872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent progress in melt pyrolysis: Fabrication and applications of high‐value carbon materials from abundant sources","authors":"Kuikui Zhang, Zeai Huang, Mingkai Yang, Mengying Liu, Yunxiao Zhou, Junjie Zhan, Ying Zhou","doi":"10.1002/sus2.157","DOIUrl":"https://doi.org/10.1002/sus2.157","url":null,"abstract":"Abstract The escalating demand for sophisticated carbon products, including carbon black, carbon nanotubes (CNTs), and graphene, has yet to be adequately addressed by conventional techniques with respect to large‐scale, efficient, and controllable carbon material synthesis. Molten pyrolysis emerges as a propitious strategy for generating such high‐value carbon materials. Abundant carbon sources encompassing methane (CH 4 ), carbon dioxide (CO 2 ), biomass, and plastics can undergo thermal decomposition into carbon constituents within molten metal or salt media. This methodology not only obviates dependence on traditional fossil fuels but additionally enables modulation of carbon material morphologies by varying the molten media, thereby presenting substantial potential for effective and controlled carbon material fabrication. In this review, we examine the capacity of molten pyrolysis in producing high‐value carbon materials derived from CH 4 , CO 2 , biomass, and plastics. Concurrently, we present a detailed overview of the potential applications of this novel methodology, particularly emphasizing its relevance in the fields of supercapacitors, flexible materials, and electrochemical cells. Furthermore, we contemplate future trajectories for molten pyrolysis, accentuating that amalgamation with auxiliary processes or technologies—like renewable energy systems and carbon capture and storage—represents a remarkably promising route for continued investigation.","PeriodicalId":29781,"journal":{"name":"SusMat","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136023945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Linchao Sun, Lixuan Che, Ming Li, William George Neal, Xu Leng, Yaojia Long, Yifeng Jia, Yunhu Gao, Matteo Palma, Yao Lu
{"title":"Zero‐waste emission design of sustainable and programmable actuators","authors":"Linchao Sun, Lixuan Che, Ming Li, William George Neal, Xu Leng, Yaojia Long, Yifeng Jia, Yunhu Gao, Matteo Palma, Yao Lu","doi":"10.1002/sus2.129","DOIUrl":"https://doi.org/10.1002/sus2.129","url":null,"abstract":"A sustainable zero-waste emission methodology is developed to prepare soft actuators using carbon nano-powders and biodegradable polymers. The entire synthetic process achieves zero-waste emission due to the water solubility and recyclability of matrixes. The geometries of composite film could be designed and modulated for programmable motions and specific applications, including walkers, smart switches, robotic arms, flexible excavators, and hand-shaped actuators.","PeriodicalId":29781,"journal":{"name":"SusMat","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135519219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guanglin Wan, Bo Peng, Liping Zhao, Feng Wang, Lai Yu, Rong Liu, Genqiang Zhang
{"title":"Dual‐strategy modification on P2‐Na<sub>0.67</sub>Ni<sub>0.33</sub>Mn<sub>0.67</sub>O<sub>2</sub> realizes stable high‐voltage cathode and high energy density full cell for sodium‐ion batteries","authors":"Guanglin Wan, Bo Peng, Liping Zhao, Feng Wang, Lai Yu, Rong Liu, Genqiang Zhang","doi":"10.1002/sus2.115","DOIUrl":"https://doi.org/10.1002/sus2.115","url":null,"abstract":"A dual strategy of Mg2+ doping integrated with ZrO2 surface modification is applied on P2-Na0.67Ni0.33Mn0.67O2 to optimize its electrochemical performance. The damaged P2–O2 phase transition as well as side reactions between cathode and electrolyte are both suppressed after dual-strategy modification, thus realizing stable high-voltage cathode and high energy density full cell for sodium ion batteries.","PeriodicalId":29781,"journal":{"name":"SusMat","volume":"93 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134942285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}