{"title":"Research progress on sustainability of key tire materials","authors":"Sai Deng, Ruixin Chen, Shiyu Duan, Qingxiu Jia, Xinmin Hao, Liqun Zhang","doi":"10.1002/sus2.159","DOIUrl":null,"url":null,"abstract":"Abstract In recent years, countries worldwide have engaged actively in the research and development of green and sustainable materials in the face of the increasing depletion of petroleum resources, the need to reduce material waste, and the environmental pollution caused by the various types of waste. In the tire industry, the key materials for the various components of tires are mostly dependent on petroleum resources. Development of green tires and green processing technologies using sustainable materials is an important development direction for the future of the tire industry, and many tire‐manufacturing companies have proposed their visions for the development of eco‐friendly tires. Rubber, cord fabric, and additives are the main materials used in tire manufacturing. This article summarizes the research status of the green materials that can meet the requirements of environmental friendliness and sustainability, replace traditional materials, and reduce petroleum resource consumption in existing tire production. These materials mainly include natural rubber or bio‐based synthetic rubber, green renewable cord fabrics, and green processing additives. The prospects for the application of these new green materials in tire manufacturing are also discussed.","PeriodicalId":29781,"journal":{"name":"SusMat","volume":"26 1","pages":"0"},"PeriodicalIF":18.7000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SusMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sus2.159","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In recent years, countries worldwide have engaged actively in the research and development of green and sustainable materials in the face of the increasing depletion of petroleum resources, the need to reduce material waste, and the environmental pollution caused by the various types of waste. In the tire industry, the key materials for the various components of tires are mostly dependent on petroleum resources. Development of green tires and green processing technologies using sustainable materials is an important development direction for the future of the tire industry, and many tire‐manufacturing companies have proposed their visions for the development of eco‐friendly tires. Rubber, cord fabric, and additives are the main materials used in tire manufacturing. This article summarizes the research status of the green materials that can meet the requirements of environmental friendliness and sustainability, replace traditional materials, and reduce petroleum resource consumption in existing tire production. These materials mainly include natural rubber or bio‐based synthetic rubber, green renewable cord fabrics, and green processing additives. The prospects for the application of these new green materials in tire manufacturing are also discussed.
期刊介绍:
SusMat aims to publish interdisciplinary and balanced research on sustainable development in various areas including materials science, engineering, chemistry, physics, and ecology. The journal focuses on sustainable materials and their impact on energy and the environment. The topics covered include environment-friendly materials, green catalysis, clean energy, and waste treatment and management. The readership includes materials scientists, engineers, chemists, physicists, energy and environment researchers, and policy makers. The journal is indexed in CAS, Current Contents, DOAJ, Science Citation Index Expanded, and Web of Science. The journal highly values innovative multidisciplinary research with wide impact.