{"title":"Recent progress in melt pyrolysis: Fabrication and applications of high‐value carbon materials from abundant sources","authors":"Kuikui Zhang, Zeai Huang, Mingkai Yang, Mengying Liu, Yunxiao Zhou, Junjie Zhan, Ying Zhou","doi":"10.1002/sus2.157","DOIUrl":null,"url":null,"abstract":"Abstract The escalating demand for sophisticated carbon products, including carbon black, carbon nanotubes (CNTs), and graphene, has yet to be adequately addressed by conventional techniques with respect to large‐scale, efficient, and controllable carbon material synthesis. Molten pyrolysis emerges as a propitious strategy for generating such high‐value carbon materials. Abundant carbon sources encompassing methane (CH 4 ), carbon dioxide (CO 2 ), biomass, and plastics can undergo thermal decomposition into carbon constituents within molten metal or salt media. This methodology not only obviates dependence on traditional fossil fuels but additionally enables modulation of carbon material morphologies by varying the molten media, thereby presenting substantial potential for effective and controlled carbon material fabrication. In this review, we examine the capacity of molten pyrolysis in producing high‐value carbon materials derived from CH 4 , CO 2 , biomass, and plastics. Concurrently, we present a detailed overview of the potential applications of this novel methodology, particularly emphasizing its relevance in the fields of supercapacitors, flexible materials, and electrochemical cells. Furthermore, we contemplate future trajectories for molten pyrolysis, accentuating that amalgamation with auxiliary processes or technologies—like renewable energy systems and carbon capture and storage—represents a remarkably promising route for continued investigation.","PeriodicalId":29781,"journal":{"name":"SusMat","volume":"21 1","pages":"0"},"PeriodicalIF":18.7000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SusMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sus2.157","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The escalating demand for sophisticated carbon products, including carbon black, carbon nanotubes (CNTs), and graphene, has yet to be adequately addressed by conventional techniques with respect to large‐scale, efficient, and controllable carbon material synthesis. Molten pyrolysis emerges as a propitious strategy for generating such high‐value carbon materials. Abundant carbon sources encompassing methane (CH 4 ), carbon dioxide (CO 2 ), biomass, and plastics can undergo thermal decomposition into carbon constituents within molten metal or salt media. This methodology not only obviates dependence on traditional fossil fuels but additionally enables modulation of carbon material morphologies by varying the molten media, thereby presenting substantial potential for effective and controlled carbon material fabrication. In this review, we examine the capacity of molten pyrolysis in producing high‐value carbon materials derived from CH 4 , CO 2 , biomass, and plastics. Concurrently, we present a detailed overview of the potential applications of this novel methodology, particularly emphasizing its relevance in the fields of supercapacitors, flexible materials, and electrochemical cells. Furthermore, we contemplate future trajectories for molten pyrolysis, accentuating that amalgamation with auxiliary processes or technologies—like renewable energy systems and carbon capture and storage—represents a remarkably promising route for continued investigation.
期刊介绍:
SusMat aims to publish interdisciplinary and balanced research on sustainable development in various areas including materials science, engineering, chemistry, physics, and ecology. The journal focuses on sustainable materials and their impact on energy and the environment. The topics covered include environment-friendly materials, green catalysis, clean energy, and waste treatment and management. The readership includes materials scientists, engineers, chemists, physicists, energy and environment researchers, and policy makers. The journal is indexed in CAS, Current Contents, DOAJ, Science Citation Index Expanded, and Web of Science. The journal highly values innovative multidisciplinary research with wide impact.