Annual Review of Biomedical Data Science最新文献

筛选
英文 中文
Integration of Multimodal Data for Deciphering Brain Disorders. 多模态数据集成用于脑部疾病的破译。
IF 6
Annual Review of Biomedical Data Science Pub Date : 2021-07-20 Epub Date: 2021-04-23 DOI: 10.1146/annurev-biodatasci-092820-020354
Jingqi Chen, Guiying Dong, Liting Song, Xingzhong Zhao, Jixin Cao, Xiaohui Luo, Jianfeng Feng, Xing-Ming Zhao
{"title":"Integration of Multimodal Data for Deciphering Brain Disorders.","authors":"Jingqi Chen,&nbsp;Guiying Dong,&nbsp;Liting Song,&nbsp;Xingzhong Zhao,&nbsp;Jixin Cao,&nbsp;Xiaohui Luo,&nbsp;Jianfeng Feng,&nbsp;Xing-Ming Zhao","doi":"10.1146/annurev-biodatasci-092820-020354","DOIUrl":"https://doi.org/10.1146/annurev-biodatasci-092820-020354","url":null,"abstract":"<p><p>The accumulation of vast amounts of multimodal data for the human brain, in both normal and disease conditions, has provided unprecedented opportunities for understanding why and how brain disorders arise. Compared with traditional analyses of single datasets, the integration of multimodal datasets covering different types of data (i.e., genomics, transcriptomics, imaging, etc.) has shed light on the mechanisms underlying brain disorders in greater detail across both the microscopic and macroscopic levels. In this review, we first briefly introduce the popular large datasets for the brain. Then, we discuss in detail how integration of multimodal human brain datasets can reveal the genetic predispositions and the abnormal molecular pathways of brain disorders. Finally, we present an outlook on how future data integration efforts may advance the diagnosis and treatment of brain disorders.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":" ","pages":"43-56"},"PeriodicalIF":6.0,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39370514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Modern Clinical Text Mining: A Guide and Review. 现代临床文本挖掘:指南与综述。
IF 6
Annual Review of Biomedical Data Science Pub Date : 2021-07-20 Epub Date: 2021-05-26 DOI: 10.1146/annurev-biodatasci-030421-030931
Bethany Percha
{"title":"Modern Clinical Text Mining: A Guide and Review.","authors":"Bethany Percha","doi":"10.1146/annurev-biodatasci-030421-030931","DOIUrl":"https://doi.org/10.1146/annurev-biodatasci-030421-030931","url":null,"abstract":"<p><p>Electronic health records (EHRs) are becoming a vital source of data for healthcare quality improvement, research, and operations. However, much of the most valuable information contained in EHRs remains buried in unstructured text. The field of clinical text mining has advanced rapidly in recent years, transitioning from rule-based approaches to machine learning and, more recently, deep learning. With new methods come new challenges, however, especially for those new to the field. This review provides an overview of clinical text mining for those who are encountering it for the first time (e.g., physician researchers, operational analytics teams, machine learning scientists from other domains). While not a comprehensive survey, this review describes the state of the art, with a particular focus on new tasks and methods developed over the past few years. It also identifies key barriers between these remarkable technical advances and the practical realities of implementation in health systems and in industry.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":" ","pages":"165-187"},"PeriodicalIF":6.0,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39370515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neoantigen Controversies. 新抗原争议。
IF 7
Annual Review of Biomedical Data Science Pub Date : 2021-07-20 Epub Date: 2021-05-11 DOI: 10.1146/annurev-biodatasci-092820-112713
Andrea Castro, Maurizio Zanetti, Hannah Carter
{"title":"Neoantigen Controversies.","authors":"Andrea Castro, Maurizio Zanetti, Hannah Carter","doi":"10.1146/annurev-biodatasci-092820-112713","DOIUrl":"10.1146/annurev-biodatasci-092820-112713","url":null,"abstract":"<p><p>Next-generation sequencing technologies have revolutionized our ability to catalog the landscape of somatic mutations in tumor genomes. These mutations can sometimes create so-called neoantigens, which allow the immune system to detect and eliminate tumor cells. However, efforts that stimulate the immune system to eliminate tumors based on their molecular differences have had less success than has been hoped for, and there are conflicting reports about the role of neoantigens in the success of this approach. Here we review some of the conflicting evidence in the literature and highlight key aspects of the tumor-immune interface that are emerging as major determinants of whether mutation-derived neoantigens will contribute to an immunotherapy response. Accounting for these factors is expected to improve success rates of future immunotherapy approaches.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":"4 ","pages":"227-253"},"PeriodicalIF":7.0,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146390/pdf/nihms-1877401.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9746249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
African Global Representation in Biomedical Sciences. 非洲在生物医学科学领域的全球代表性。
IF 6
Annual Review of Biomedical Data Science Pub Date : 2021-07-20 DOI: 10.1146/annurev-biodatasci-102920-112550
Nicola Mulder, Lyndon Zass, Yosr Hamdi, Houcemeddine Othman, Sumir Panji, Imane Allali, Yasmina Jaufeerally Fakim
{"title":"African Global Representation in Biomedical Sciences.","authors":"Nicola Mulder,&nbsp;Lyndon Zass,&nbsp;Yosr Hamdi,&nbsp;Houcemeddine Othman,&nbsp;Sumir Panji,&nbsp;Imane Allali,&nbsp;Yasmina Jaufeerally Fakim","doi":"10.1146/annurev-biodatasci-102920-112550","DOIUrl":"https://doi.org/10.1146/annurev-biodatasci-102920-112550","url":null,"abstract":"<p><p>African populations are diverse in their ethnicity, language, culture, and genetics. Although plagued by high disease burdens, until recently the continent has largely been excluded from biomedical studies. Along with limitations in research and clinical infrastructure, human capacity, and funding, this omission has resulted in an underrepresentation of African data and disadvantaged African scientists. This review interrogates the relative abundance of biomedical data from Africa, primarily in genomics and other omics. The visibility of African science through publications is also discussed. A challenge encountered in this review is the relative lack of annotation of data on their geographical or population origin, with African countries represented as a single group. In addition to the abovementioned limitations,the global representation of African data may also be attributed to the hesitation to deposit data in public repositories. Whatever the reason, the disparity should be addressed, as African data have enormous value for scientists in Africa and globally.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":" ","pages":"57-81"},"PeriodicalIF":6.0,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39373761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Satellite Monitoring for Air Quality and Health. 空气质量和健康卫星监测。
IF 6
Annual Review of Biomedical Data Science Pub Date : 2021-07-20 Epub Date: 2021-06-01 DOI: 10.1146/annurev-biodatasci-110920-093120
Tracey Holloway, Daegan Miller, Susan Anenberg, Minghui Diao, Bryan Duncan, Arlene M Fiore, Daven K Henze, Jeremy Hess, Patrick L Kinney, Yang Liu, Jessica L Neu, Susan M O'Neill, M Talat Odman, R Bradley Pierce, Armistead G Russell, Daniel Tong, J Jason West, Mark A Zondlo
{"title":"Satellite Monitoring for Air Quality and Health.","authors":"Tracey Holloway,&nbsp;Daegan Miller,&nbsp;Susan Anenberg,&nbsp;Minghui Diao,&nbsp;Bryan Duncan,&nbsp;Arlene M Fiore,&nbsp;Daven K Henze,&nbsp;Jeremy Hess,&nbsp;Patrick L Kinney,&nbsp;Yang Liu,&nbsp;Jessica L Neu,&nbsp;Susan M O'Neill,&nbsp;M Talat Odman,&nbsp;R Bradley Pierce,&nbsp;Armistead G Russell,&nbsp;Daniel Tong,&nbsp;J Jason West,&nbsp;Mark A Zondlo","doi":"10.1146/annurev-biodatasci-110920-093120","DOIUrl":"https://doi.org/10.1146/annurev-biodatasci-110920-093120","url":null,"abstract":"<p><p>Data from satellite instruments provide estimates of gas and particle levels relevant to human health, even pollutants invisible to the human eye. However, the successful interpretation of satellite data requires an understanding of how satellites relate to other data sources, as well as factors affecting their application to health challenges. Drawing from the expertise and experience of the 2016-2020 NASA HAQAST (Health and Air Quality Applied Sciences Team), we present a review of satellite data for air quality and health applications. We include a discussion of satellite data for epidemiological studies and health impact assessments, as well as the use of satellite data to evaluate air quality trends, support air quality regulation, characterize smoke from wildfires, and quantify emission sources. The primary advantage of satellite data compared to in situ measurements, e.g., from air quality monitoring stations, is their spatial coverage. Satellite data can reveal where pollution levels are highest around the world, how levels have changed over daily to decadal periods, and where pollutants are transported from urban to global scales. To date, air quality and health applications have primarily utilized satellite observations and satellite-derived products relevant to near-surface particulate matter <2.5 μm in diameter (PM<sub>2.5</sub>) and nitrogen dioxide (NO<sub>2</sub>). Health and air quality communities have grown increasingly engaged in the use of satellite data, and this trend is expected to continue. From health researchers to air quality managers, and from global applications to community impacts, satellite data are transforming the way air pollution exposure is evaluated.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":" ","pages":"417-447"},"PeriodicalIF":6.0,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39373763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
The Ethics of Consent in a Shifting Genomic Ecosystem. 在不断变化的基因组生态系统中的同意伦理。
IF 6
Annual Review of Biomedical Data Science Pub Date : 2021-07-20 DOI: 10.1146/annurev-biodatasci-030221-125715
Sandra Soo-Jin Lee
{"title":"The Ethics of Consent in a Shifting Genomic Ecosystem.","authors":"Sandra Soo-Jin Lee","doi":"10.1146/annurev-biodatasci-030221-125715","DOIUrl":"https://doi.org/10.1146/annurev-biodatasci-030221-125715","url":null,"abstract":"<p><p>The collection and use of human genetic data raise important ethical questions about how to balance individual autonomy and privacy with the potential for public good. The proliferation of local, national, and international efforts to collect genetic data and create linkages to support large-scale initiatives in precision medicine and the learning health system creates new demands for broad data sharing that involve managing competing interests and careful consideration of what constitutes appropriate ethical trade-offs. This review describes these emerging ethical issues with a focus on approaches to consent and issues related to justice in the shifting genomic research ecosystem.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":" ","pages":"145-164"},"PeriodicalIF":6.0,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8683157/pdf/nihms-1760354.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39371085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Artificial Intelligence in Action: Addressing the COVID-19 Pandemic with Natural Language Processing. 人工智能在行动:用自然语言处理应对COVID-19大流行。
IF 6
Annual Review of Biomedical Data Science Pub Date : 2021-07-20 Epub Date: 2021-05-14 DOI: 10.1146/annurev-biodatasci-021821-061045
Qingyu Chen, Robert Leaman, Alexis Allot, Ling Luo, Chih-Hsuan Wei, Shankai Yan, Zhiyong Lu
{"title":"Artificial Intelligence in Action: Addressing the COVID-19 Pandemic with Natural Language Processing.","authors":"Qingyu Chen,&nbsp;Robert Leaman,&nbsp;Alexis Allot,&nbsp;Ling Luo,&nbsp;Chih-Hsuan Wei,&nbsp;Shankai Yan,&nbsp;Zhiyong Lu","doi":"10.1146/annurev-biodatasci-021821-061045","DOIUrl":"https://doi.org/10.1146/annurev-biodatasci-021821-061045","url":null,"abstract":"<p><p>The COVID-19 (coronavirus disease 2019) pandemic has had a significant impact on society, both because of the serious health effects of COVID-19 and because of public health measures implemented to slow its spread. Many of these difficulties are fundamentally information needs; attempts to address these needs have caused an information overload for both researchers and the public. Natural language processing (NLP)-the branch of artificial intelligence that interprets human language-can be applied to address many of the information needs made urgent by the COVID-19 pandemic. This review surveys approximately 150 NLP studies and more than 50 systems and datasets addressing the COVID-19 pandemic. We detail work on four core NLP tasks: information retrieval, named entity recognition, literature-based discovery, and question answering. We also describe work that directly addresses aspects of the pandemic through four additional tasks: topic modeling, sentiment and emotion analysis, caseload forecasting, and misinformation detection. We conclude by discussing observable trends and remaining challenges.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":" ","pages":"313-339"},"PeriodicalIF":6.0,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39371087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 27
Data Science in the Food Industry. 食品工业中的数据科学。
IF 6
Annual Review of Biomedical Data Science Pub Date : 2021-07-20 Epub Date: 2021-05-13 DOI: 10.1146/annurev-biodatasci-020221-123602
George-John Nychas, Emma Sims, Panagiotis Tsakanikas, Fady Mohareb
{"title":"Data Science in the Food Industry.","authors":"George-John Nychas,&nbsp;Emma Sims,&nbsp;Panagiotis Tsakanikas,&nbsp;Fady Mohareb","doi":"10.1146/annurev-biodatasci-020221-123602","DOIUrl":"https://doi.org/10.1146/annurev-biodatasci-020221-123602","url":null,"abstract":"<p><p>Food safety is one of the main challenges of the agri-food industry that is expected to be addressed in the current environment of tremendous technological progress, where consumers' lifestyles and preferences are in a constant state of flux. Food chain transparency and trust are drivers for food integrity control and for improvements in efficiency and economic growth. Similarly, the circular economy has great potential to reduce wastage and improve the efficiency of operations in multi-stakeholder ecosystems. Throughout the food chain cycle, all food commodities are exposed to multiple hazards, resulting in a high likelihood of contamination. Such biological or chemical hazards may be naturally present at any stage of food production, whether accidentally introduced or fraudulently imposed, risking consumers' health and their faith in the food industry. Nowadays, a massive amount of data is generated, not only from the next generation of food safety monitoring systems and along the entire food chain (primary production included) but also from the Internet of things, media, and other devices. These data should be used for the benefit of society, and the scientific field of data science should be a vital player in helping to make this possible.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":" ","pages":"341-367"},"PeriodicalIF":6.0,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39371089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Metatranscriptomics for the Human Microbiome and Microbial Community Functional Profiling. 人类微生物组和微生物群落功能分析的超转录组学。
IF 6
Annual Review of Biomedical Data Science Pub Date : 2021-07-20 Epub Date: 2021-05-13 DOI: 10.1146/annurev-biodatasci-031121-103035
Yancong Zhang, Kelsey N Thompson, Tobyn Branck, Yan Yan, Long H Nguyen, Eric A Franzosa, Curtis Huttenhower
{"title":"Metatranscriptomics for the Human Microbiome and Microbial Community Functional Profiling.","authors":"Yancong Zhang,&nbsp;Kelsey N Thompson,&nbsp;Tobyn Branck,&nbsp;Yan Yan,&nbsp;Long H Nguyen,&nbsp;Eric A Franzosa,&nbsp;Curtis Huttenhower","doi":"10.1146/annurev-biodatasci-031121-103035","DOIUrl":"https://doi.org/10.1146/annurev-biodatasci-031121-103035","url":null,"abstract":"<p><p>Shotgun metatranscriptomics (MTX) is an increasingly practical way to survey microbial community gene function and regulation at scale. This review begins by summarizing the motivations for community transcriptomics and the history of the field. We then explore the principles, best practices, and challenges of contemporary MTX workflows: beginning with laboratory methods for isolation and sequencing of community RNA, followed by informatics methods for quantifying RNA features, and finally statistical methods for detecting differential expression in a community context. In thesecond half of the review, we survey important biological findings from the MTX literature, drawing examples from the human microbiome, other (nonhuman) host-associated microbiomes, and the environment. Across these examples, MTX methods prove invaluable for probing microbe-microbe and host-microbe interactions, the dynamics of energy harvest and chemical cycling, and responses to environmental stresses. We conclude with a review of open challenges in the MTX field, including making assays and analyses more robust, accessible, and adaptable to new technologies; deciphering roles for millions of uncharacterized microbial transcripts; and solving applied problems such as biomarker discovery and development of microbial therapeutics.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":" ","pages":"279-311"},"PeriodicalIF":6.0,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39370513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 25
Phenotyping Neurodegeneration in Human iPSCs. 人类ips细胞神经变性的表型分析。
IF 6
Annual Review of Biomedical Data Science Pub Date : 2021-07-20 Epub Date: 2021-04-23 DOI: 10.1146/annurev-biodatasci-092820-025214
Jonathan Li, Ernest Fraenkel
{"title":"Phenotyping Neurodegeneration in Human iPSCs.","authors":"Jonathan Li,&nbsp;Ernest Fraenkel","doi":"10.1146/annurev-biodatasci-092820-025214","DOIUrl":"https://doi.org/10.1146/annurev-biodatasci-092820-025214","url":null,"abstract":"<p><p>Induced pluripotent stem cell (iPSC) technology holds promise for modeling neurodegenerative diseases. Traditional approaches for disease modeling using animal and cellular models require knowledge of disease mutations. However, many patients with neurodegenerative diseases do not have a known genetic cause. iPSCs offer a way to generate patient-specific models and study pathways of dysfunction in an in vitro setting in order to understand the causes and subtypes of neurodegeneration. Furthermore, iPSC-based models can be used to search for candidate therapeutics using high-throughput screening. Here we review how iPSC-based models are currently being used to further our understanding of neurodegenerative diseases, as well as discuss their challenges and future directions.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":" ","pages":"83-100"},"PeriodicalIF":6.0,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9237961/pdf/nihms-1816934.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39371084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信