Qingyu Chen, Robert Leaman, Alexis Allot, Ling Luo, Chih-Hsuan Wei, Shankai Yan, Zhiyong Lu
{"title":"人工智能在行动:用自然语言处理应对COVID-19大流行。","authors":"Qingyu Chen, Robert Leaman, Alexis Allot, Ling Luo, Chih-Hsuan Wei, Shankai Yan, Zhiyong Lu","doi":"10.1146/annurev-biodatasci-021821-061045","DOIUrl":null,"url":null,"abstract":"<p><p>The COVID-19 (coronavirus disease 2019) pandemic has had a significant impact on society, both because of the serious health effects of COVID-19 and because of public health measures implemented to slow its spread. Many of these difficulties are fundamentally information needs; attempts to address these needs have caused an information overload for both researchers and the public. Natural language processing (NLP)-the branch of artificial intelligence that interprets human language-can be applied to address many of the information needs made urgent by the COVID-19 pandemic. This review surveys approximately 150 NLP studies and more than 50 systems and datasets addressing the COVID-19 pandemic. We detail work on four core NLP tasks: information retrieval, named entity recognition, literature-based discovery, and question answering. We also describe work that directly addresses aspects of the pandemic through four additional tasks: topic modeling, sentiment and emotion analysis, caseload forecasting, and misinformation detection. We conclude by discussing observable trends and remaining challenges.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Artificial Intelligence in Action: Addressing the COVID-19 Pandemic with Natural Language Processing.\",\"authors\":\"Qingyu Chen, Robert Leaman, Alexis Allot, Ling Luo, Chih-Hsuan Wei, Shankai Yan, Zhiyong Lu\",\"doi\":\"10.1146/annurev-biodatasci-021821-061045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The COVID-19 (coronavirus disease 2019) pandemic has had a significant impact on society, both because of the serious health effects of COVID-19 and because of public health measures implemented to slow its spread. Many of these difficulties are fundamentally information needs; attempts to address these needs have caused an information overload for both researchers and the public. Natural language processing (NLP)-the branch of artificial intelligence that interprets human language-can be applied to address many of the information needs made urgent by the COVID-19 pandemic. This review surveys approximately 150 NLP studies and more than 50 systems and datasets addressing the COVID-19 pandemic. We detail work on four core NLP tasks: information retrieval, named entity recognition, literature-based discovery, and question answering. We also describe work that directly addresses aspects of the pandemic through four additional tasks: topic modeling, sentiment and emotion analysis, caseload forecasting, and misinformation detection. We conclude by discussing observable trends and remaining challenges.</p>\",\"PeriodicalId\":29775,\"journal\":{\"name\":\"Annual Review of Biomedical Data Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Biomedical Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-biodatasci-021821-061045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/5/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-biodatasci-021821-061045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Artificial Intelligence in Action: Addressing the COVID-19 Pandemic with Natural Language Processing.
The COVID-19 (coronavirus disease 2019) pandemic has had a significant impact on society, both because of the serious health effects of COVID-19 and because of public health measures implemented to slow its spread. Many of these difficulties are fundamentally information needs; attempts to address these needs have caused an information overload for both researchers and the public. Natural language processing (NLP)-the branch of artificial intelligence that interprets human language-can be applied to address many of the information needs made urgent by the COVID-19 pandemic. This review surveys approximately 150 NLP studies and more than 50 systems and datasets addressing the COVID-19 pandemic. We detail work on four core NLP tasks: information retrieval, named entity recognition, literature-based discovery, and question answering. We also describe work that directly addresses aspects of the pandemic through four additional tasks: topic modeling, sentiment and emotion analysis, caseload forecasting, and misinformation detection. We conclude by discussing observable trends and remaining challenges.
期刊介绍:
The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.