Jamie R Robinson, Wei-Qi Wei, Dan M Roden, Joshua C Denny
{"title":"Defining Phenotypes from Clinical Data to Drive Genomic Research.","authors":"Jamie R Robinson, Wei-Qi Wei, Dan M Roden, Joshua C Denny","doi":"10.1146/annurev-biodatasci-080917-013335","DOIUrl":"https://doi.org/10.1146/annurev-biodatasci-080917-013335","url":null,"abstract":"<p><p>The rise in available longitudinal patient information in electronic health records (EHRs) and their coupling to DNA biobanks has resulted in a dramatic increase in genomic research using EHR data for phenotypic information. EHRs have the benefit of providing a deep and broad data source of health-related phenotypes, including drug response traits, expanding the phenome available to researchers for discovery. The earliest efforts at repurposing EHR data for research involved manual chart review of limited numbers of patients but now typically involve applications of rule-based and machine learning algorithms operating on sometimes huge corpora for both genome-wide and phenome-wide approaches. We highlight here the current methods, impact, challenges, and opportunities for repurposing clinical data to define patient phenotypes for genomics discovery. Use of EHR data has proven a powerful method for elucidation of genomic influences on diseases, traits, and drug-response phenotypes and will continue to have increasing applications in large cohort studies.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":"1 ","pages":"69-92"},"PeriodicalIF":6.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-biodatasci-080917-013335","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39011670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Privacy Policy and Technology in Biomedical Data Science.","authors":"April Moreno Arellano, Wenrui Dai, Shuang Wang, Xiaoqian Jiang, Lucila Ohno-Machado","doi":"10.1146/annurev-biodatasci-080917-013416","DOIUrl":"10.1146/annurev-biodatasci-080917-013416","url":null,"abstract":"<p><p>Privacyis an important consideration when sharing clinical data, which often contain sensitive information. Adequate protection to safeguard patient privacy and to increase public trust in biomedical research is paramount. This review covers topics in policy and technology in the context of clinical data sharing. We review policy articles related to (<i>a</i>) the Common Rule, HIPAA privacy and security rules, and governance; (<i>b</i>) patients' viewpoints and consent practices; and (<i>c</i>) research ethics. We identify key features of the revised Common Rule and the most notable changes since its previous version. We address data governance for research in addition to the increasing emphasis on ethical and social implications. Research ethics topics include data sharing best practices, use of data from populations of low socioeconomic status (SES), recent updates to institutional review board (IRB) processes to protect human subjects' data, and important concerns about the limitations of current policies to address data deidentification. In terms of technology, we focus on articles that have applicability in real world health care applications: deidentification methods that comply with HIPAA, data anonymization approaches to satisfy well-acknowledged issues in deidentified data, encryption methods to safeguard data analyses, and privacy-preserving predictive modeling. The first two technology topics are mostly relevant to methodologies that attempt to sanitize structured or unstructured data. The third topic includes analysis on encrypted data. The last topic includes various mechanisms to build statistical models without sharing raw data.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":"1 ","pages":"115-129"},"PeriodicalIF":6.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6497413/pdf/nihms-1021989.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37216509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}