Yoo-Ah Kim, Mark D M Leiserson, Priya Moorjani, Roded Sharan, Damian Wojtowicz, Teresa M Przytycka
{"title":"突变签名:从方法到机制。","authors":"Yoo-Ah Kim, Mark D M Leiserson, Priya Moorjani, Roded Sharan, Damian Wojtowicz, Teresa M Przytycka","doi":"10.1146/annurev-biodatasci-122320-120920","DOIUrl":null,"url":null,"abstract":"<p><p>Mutations are the driving force of evolution, yet they underlie many diseases, in particular, cancer. They are thought to arise from a combination of stochastic errors in DNA processing, naturally occurring DNA damage (e.g., the spontaneous deamination of methylated CpG sites), replication errors, and dysregulation of DNA repair mechanisms. High-throughput sequencing has made it possible to generate large datasets to study mutational processes in health and disease. Since the emergence of the first mutational process studies in 2012, this field is gaining increasing attention and has already accumulated a host of computational approaches and biomedical applications.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":" ","pages":"189-206"},"PeriodicalIF":7.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Mutational Signatures: From Methods to Mechanisms.\",\"authors\":\"Yoo-Ah Kim, Mark D M Leiserson, Priya Moorjani, Roded Sharan, Damian Wojtowicz, Teresa M Przytycka\",\"doi\":\"10.1146/annurev-biodatasci-122320-120920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mutations are the driving force of evolution, yet they underlie many diseases, in particular, cancer. They are thought to arise from a combination of stochastic errors in DNA processing, naturally occurring DNA damage (e.g., the spontaneous deamination of methylated CpG sites), replication errors, and dysregulation of DNA repair mechanisms. High-throughput sequencing has made it possible to generate large datasets to study mutational processes in health and disease. Since the emergence of the first mutational process studies in 2012, this field is gaining increasing attention and has already accumulated a host of computational approaches and biomedical applications.</p>\",\"PeriodicalId\":29775,\"journal\":{\"name\":\"Annual Review of Biomedical Data Science\",\"volume\":\" \",\"pages\":\"189-206\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Biomedical Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-biodatasci-122320-120920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/5/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-biodatasci-122320-120920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Mutational Signatures: From Methods to Mechanisms.
Mutations are the driving force of evolution, yet they underlie many diseases, in particular, cancer. They are thought to arise from a combination of stochastic errors in DNA processing, naturally occurring DNA damage (e.g., the spontaneous deamination of methylated CpG sites), replication errors, and dysregulation of DNA repair mechanisms. High-throughput sequencing has made it possible to generate large datasets to study mutational processes in health and disease. Since the emergence of the first mutational process studies in 2012, this field is gaining increasing attention and has already accumulated a host of computational approaches and biomedical applications.
期刊介绍:
The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.