多模态数据集成用于脑部疾病的破译。

IF 7 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Jingqi Chen, Guiying Dong, Liting Song, Xingzhong Zhao, Jixin Cao, Xiaohui Luo, Jianfeng Feng, Xing-Ming Zhao
{"title":"多模态数据集成用于脑部疾病的破译。","authors":"Jingqi Chen,&nbsp;Guiying Dong,&nbsp;Liting Song,&nbsp;Xingzhong Zhao,&nbsp;Jixin Cao,&nbsp;Xiaohui Luo,&nbsp;Jianfeng Feng,&nbsp;Xing-Ming Zhao","doi":"10.1146/annurev-biodatasci-092820-020354","DOIUrl":null,"url":null,"abstract":"<p><p>The accumulation of vast amounts of multimodal data for the human brain, in both normal and disease conditions, has provided unprecedented opportunities for understanding why and how brain disorders arise. Compared with traditional analyses of single datasets, the integration of multimodal datasets covering different types of data (i.e., genomics, transcriptomics, imaging, etc.) has shed light on the mechanisms underlying brain disorders in greater detail across both the microscopic and macroscopic levels. In this review, we first briefly introduce the popular large datasets for the brain. Then, we discuss in detail how integration of multimodal human brain datasets can reveal the genetic predispositions and the abnormal molecular pathways of brain disorders. Finally, we present an outlook on how future data integration efforts may advance the diagnosis and treatment of brain disorders.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Integration of Multimodal Data for Deciphering Brain Disorders.\",\"authors\":\"Jingqi Chen,&nbsp;Guiying Dong,&nbsp;Liting Song,&nbsp;Xingzhong Zhao,&nbsp;Jixin Cao,&nbsp;Xiaohui Luo,&nbsp;Jianfeng Feng,&nbsp;Xing-Ming Zhao\",\"doi\":\"10.1146/annurev-biodatasci-092820-020354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The accumulation of vast amounts of multimodal data for the human brain, in both normal and disease conditions, has provided unprecedented opportunities for understanding why and how brain disorders arise. Compared with traditional analyses of single datasets, the integration of multimodal datasets covering different types of data (i.e., genomics, transcriptomics, imaging, etc.) has shed light on the mechanisms underlying brain disorders in greater detail across both the microscopic and macroscopic levels. In this review, we first briefly introduce the popular large datasets for the brain. Then, we discuss in detail how integration of multimodal human brain datasets can reveal the genetic predispositions and the abnormal molecular pathways of brain disorders. Finally, we present an outlook on how future data integration efforts may advance the diagnosis and treatment of brain disorders.</p>\",\"PeriodicalId\":29775,\"journal\":{\"name\":\"Annual Review of Biomedical Data Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Biomedical Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-biodatasci-092820-020354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/4/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-biodatasci-092820-020354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

人类大脑在正常和疾病条件下的大量多模态数据的积累,为理解大脑疾病产生的原因和方式提供了前所未有的机会。与传统的单一数据集分析相比,涵盖不同类型数据(即基因组学、转录组学、成像等)的多模态数据集的整合,在微观和宏观层面上更详细地揭示了大脑疾病的机制。在这篇综述中,我们首先简要介绍了流行的大脑大数据集。然后,我们详细讨论了多模态人脑数据集的整合如何揭示大脑疾病的遗传易感性和异常分子途径。最后,我们展望了未来数据整合工作将如何促进脑部疾病的诊断和治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration of Multimodal Data for Deciphering Brain Disorders.

The accumulation of vast amounts of multimodal data for the human brain, in both normal and disease conditions, has provided unprecedented opportunities for understanding why and how brain disorders arise. Compared with traditional analyses of single datasets, the integration of multimodal datasets covering different types of data (i.e., genomics, transcriptomics, imaging, etc.) has shed light on the mechanisms underlying brain disorders in greater detail across both the microscopic and macroscopic levels. In this review, we first briefly introduce the popular large datasets for the brain. Then, we discuss in detail how integration of multimodal human brain datasets can reveal the genetic predispositions and the abnormal molecular pathways of brain disorders. Finally, we present an outlook on how future data integration efforts may advance the diagnosis and treatment of brain disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.10
自引率
1.70%
发文量
0
期刊介绍: The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信