{"title":"Prediction of Mechanical Alterations in Multi-Layer Sbs-Modified Hot Mix Asphalt and Soil-Foundation Structure","authors":"A. Karakas, Faruk Ortes","doi":"10.7250/bjrbe.2021-16.536","DOIUrl":"https://doi.org/10.7250/bjrbe.2021-16.536","url":null,"abstract":"Traffic and environmental conditions are key parameters in road applications. Empirical studies and numerical analyses, which are widely adopted in material design studies, are used for analysing superstructures of the roads, and developmental approaches are improved for future designs as well. In flexible pavements, polymer and fibre-reinforced additives are frequently used to make them durable against deteriorations and to extend their service life. One of the additives that is mostly preferred is the Styrene Butadiene Styrene (SBS) material thanks to a variety of their physical and chemical properties. Physical and mechanical properties of the natural ground layer and its interactions with the superstructure are crucial parameters in terms of performance under various environmental and traffic conditions. In this study, the use of SBS-modified Hot Mix Asphalt (HMA) was examined as a flexible superstructure, and the mechanical properties of the granular base and the natural ground layer were tested. The stress and deformation occurring within layers in various periods were also considered. The presented study is a suitable tool for the use of additives that significantly contribute to the mechanical properties and service life of the roads. In this study, it is concluded that the use of additives significantly improves the mechanical response and service life of the roads.","PeriodicalId":297140,"journal":{"name":"The Baltic Journal of Road and Bridge Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130536160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jose Manuel Sanz Garcia, Manuel Romana Garcia, Jose Antonio Ramos Garcia
{"title":"Influence of Texture on Drainability, Splash and Spray in Flexible Pavements","authors":"Jose Manuel Sanz Garcia, Manuel Romana Garcia, Jose Antonio Ramos Garcia","doi":"10.7250/bjrbe.2021-16.530","DOIUrl":"https://doi.org/10.7250/bjrbe.2021-16.530","url":null,"abstract":"Although the splash and spray phenomenon produced by heavy trucks on road pavements is not a significant issue in relation to traffic safety, it may cause considerable inconveniences for those driving cars or motorbikes. This paper addresses the issue of pavement engineering with regard to surface characteristics; particularly pavement texture and its influence on water mobilization and projection in conditions of wet weather and heavy traffic. Considering the theoretical concept of pavement macrotexture, the analysis starts with the hypothesis concerning a relationship between Mean Profile Depth (MPD) and water splashed during rain. In order to focus on the impact of texture on splash and spray, a field experiment was carried out to test the hypothesis using 5 test tracks on a range of different pavement textures. The experiment was performed using a Traffic Speed Drain Meter (TSDM), which is a new drainability survey device presented to PIARC for approval. This equipment employs the laser and image technology and allows one to simultaneously obtain MPD and water splash data. The results of drainability and MPD were compared for each test track. Having analysed the pavements with different MPD ranges in the experiment, it has been concluded that MPD and water splashed apparently have an inversely proportional relationship. In addition, the TSDM proved to be a suitable equipment (repeatability) at an affordable cost (high performance of data collection). Finally, it has been concluded that there is a way to reduce splash and spray adjusting the infrastructure rather trying to solve the issue modifying vehicle moving modes. Therefore, if the issue is properly addressed by civil engineers and road managers, road safety in the areas of heavy rain may be improved at an affordable cost. The experiment presented here is considered a starting point opening the path for further research.","PeriodicalId":297140,"journal":{"name":"The Baltic Journal of Road and Bridge Engineering","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125628108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performance Evaluation of a Hybrid Roundabout Using a Microscopic Simulation","authors":"Yavuz User, Seyitali İlyas, G. Tinaztepe","doi":"10.7250/bjrbe.2021-16.532","DOIUrl":"https://doi.org/10.7250/bjrbe.2021-16.532","url":null,"abstract":"Roundabouts are one of the safest types of intersections. There are a number of roundabout types in literature. Each roundabout type is distinguished by some characteristics. To design more efficient junctions, hybrid roundabouts can be created by combining their required characteristics geometrically. In this study, the safety feature of the turbo junction type and the easing up the traffic density feature of the hamburger junction have been combined. Some geometric parameters and layout details of the proposed hybrid roundabout are given, and its performance was simulated in a signalised 4-leg roundabout as the most frequently used intersection in Antalya. The performance of the proposed hybrid roundabout was compared with the status in 2016 and the current status in 2017 and beyond of the roundabout through AIMSUN transport simulation software. In regard to performance analysis, delay time, travel time, speed, density, fuel consumption, number of stops, queuing, carbon emission were analysed for all statuses and compared. In addition, traffic safety analysis has been performed for all statuses and compared. Results show that the overall average performance of the proposed roundabout increases by 40% and 41.8% in comparison with the statutes in 2016, 2017 and beyond, respectively. The proposed roundabout is 41% safer than the status in 2016, and the accident risk is lower by 18.5% than the current status.","PeriodicalId":297140,"journal":{"name":"The Baltic Journal of Road and Bridge Engineering","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115459480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Moving Load Identification with Long Gauge Fiber Optic Strain Sensing","authors":"Qingqing Zhang, Wenju Zhao, Jian Zhang","doi":"10.7250/bjrbe.2021-16.535","DOIUrl":"https://doi.org/10.7250/bjrbe.2021-16.535","url":null,"abstract":"Moving load identification has been researched with regard to the analysis of structural responses, taking into consideration that the structural responses would be affected by the axle parameters, which in its turn would complicate obtaining the values of moving vehicle loads. In this research, a method that identifies the loads of moving vehicles using the modified maximum strain value considering the long-gauge fiber optic strain responses is proposed. The method is based on the assumption that the modified maximum strain value caused only by the axle loads may be easily used to identify the load of moving vehicles by eliminating the influence of these axle parameters from the peak value, which is not limited to a specific type of bridges and can be applied in conditions, where there are multiple moving vehicles on the bridge. Numerical simulations demonstrate that the gross vehicle weights (GVWs) and axle weights are estimated with high accuracy under complex vehicle loads. The effectiveness of the proposed method was verified through field testing of a continuous girder bridge. The identified axle weights and gross vehicle weights are comparable with the static measurements obtained by the static weighing.","PeriodicalId":297140,"journal":{"name":"The Baltic Journal of Road and Bridge Engineering","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126686135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alireza Mahdavi, A. M. Moghaddam, Mohammad Dareyni
{"title":"Durability and Mechanical Properties of Roller Compacted Concrete Containing Coarse Reclaimed Asphalt Pavement","authors":"Alireza Mahdavi, A. M. Moghaddam, Mohammad Dareyni","doi":"10.7250/bjrbe.2021-16.533","DOIUrl":"https://doi.org/10.7250/bjrbe.2021-16.533","url":null,"abstract":"The feasibility of utilizing Reclaimed Asphalt Pavement (RAP) as a replacement for coarse aggregates in Roller Compacted Concretes (RCCs) was assessed. This replacement was performed in different volumetric percentages (25%, 50%, 75%, and 100%). During this process, RAP materials were subject to abrasion and impact in the Los Angeles drum and mixer before being added to the mixture. Compressive strength, splitting tensile strength, flexural strength, crack propagation, Ultrasonic Pulse Velocity (UPV), electrical resistivity, density, and water absorption (in 7, 28, and 90 days of age) tests were done on all mixtures. Results show that utilizing RAP in RCC can cause a drop in the mechanical properties, but it has positive effects on crack propagation of the specimens due to their increased toughness. Increasing the amount of RAP in the mixtures has increased their electrical resistivity, likely owing to the hydrophobic properties of RAP, which causes prevention from connecting pores to each other. The relationship between the mechanical properties and UPV of the mixtures was analysed using regression models. Moreover, one- and two-way ANOVA (analysis of variance) tests were performed on the results at a 95% confidence level. Finally, replacing the coarse aggregates with RAP only up to 75% is suggested if pre-processing is performed.","PeriodicalId":297140,"journal":{"name":"The Baltic Journal of Road and Bridge Engineering","volume":"299 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126516042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Kovalchuk, M. Sysyn, Yuriy Hnativ, A. Onyshchenko, M. Koval, O. Tiutkin, M. Parneta
{"title":"Restoration of the Bearing Capacity of Damaged Transport Constructions Made of Corrugated Metal Structures","authors":"V. Kovalchuk, M. Sysyn, Yuriy Hnativ, A. Onyshchenko, M. Koval, O. Tiutkin, M. Parneta","doi":"10.7250/bjrbe.2021-16.529","DOIUrl":"https://doi.org/10.7250/bjrbe.2021-16.529","url":null,"abstract":"The paper deals with damages of transport constructions made of corrugated metal structures in the body of a railway track or a road during their operation. A constructive variant to restore the bearing capacity of structures was developed, which consists of installing an annular stiffening rib into the concave part of the corrugated metal profile. The main advantage of this method compared to the double corrugating method is the possibility of performing the reinforcement works during structure operation without interrupting the movement of transport vesicles. The study has proved that the reinforcement method significantly increases the carrying capacity of corrugated metal structures. A numerical finite element model was developed to determine the stress-strain state of structures made of corrugated metal structures reinforced with round stiffening ribs. The soil pressure on the corrugated shell in the model is taken into account with the application of radial and axial forces on the outer surface of the shell. It was determined that the most appropriate location of the ribs is in the centre of the building, where the reinforcement area corresponds to the width of the road or railway line. The advantage of this approach is the ability to more efficiently distribute the reinforcement material by selecting the ribs in the most loaded sections of corrugated metal structures.","PeriodicalId":297140,"journal":{"name":"The Baltic Journal of Road and Bridge Engineering","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114625173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Jiang, Yong-guo Fu, Linyu Li, Han-yan Gu, Y. Qiu
{"title":"Design Optimisation Analysis of Isolating Wall for Separated Widening Embankment on Soft Ground","authors":"Xin Jiang, Yong-guo Fu, Linyu Li, Han-yan Gu, Y. Qiu","doi":"10.7250/bjrbe.2021-16.527","DOIUrl":"https://doi.org/10.7250/bjrbe.2021-16.527","url":null,"abstract":"In this paper, the typical cases of subgrade separated widening project in China are summarised. The research progress of subgrade separated widening and isolating wall applications are reviewed in highway reconstruction and extension. A numerical model is established based on the PLAXIS finite element software, considering both material nonlinearity and geometric nonlinearity. The effect mechanism of the isolating wall is discussed on the settlement control of the new and existing embankment on soft ground. The effect rule of the core design parameters of the isolating wall is revealed on the settlement disturbance of the existing embankment, such as location, depth, thickness and elastic modulus, and the weight rank of the influence is analysed. The results indicate that the isolating wall effectively reduces the lateral displacement and vertical settlement of the existing embankment, and there is an optimal design location for the isolating wall. In addition, with the increase of design parameters of the isolating wall, including depth, thickness and elastic modulus, the overall settlement of the existing embankment tends to be uniform, and there are optimal values. Furthermore, the depth of isolating wall is given priority, compared to location, thickness and elastic modulus during the isolating wall design process. The research results lay a theoretical foundation for the design optimisation of the isolating wall in the separated widening project of soft ground.","PeriodicalId":297140,"journal":{"name":"The Baltic Journal of Road and Bridge Engineering","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125278288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of the Organic Soil Compressibility from In-Situ and Laboratory Tests for Road Application","authors":"I. Chmielewska","doi":"10.7250/bjrbe.2021-16.526","DOIUrl":"https://doi.org/10.7250/bjrbe.2021-16.526","url":null,"abstract":"Organic soil is characterised by high compressibility and should be improved so that it can be used for construction. The use of every method of soil improvement requires knowledge of the compressibility parameters. One of these parameters is the constrained modulus. The constrained modulus can be determined using laboratory or in-situ tests. In this study, the constrained modulus of organic soil was determined using oedometer and piezocone tests (CPTU). The author analysed subsoil under an approximately 250 m section of a designed road in north-eastern Poland. The constrained modulus of organic soil sampled from four different depths was determined in oedometer tests. Piezocone tests were conducted at 18 points located every 15 m along the length of the section concerned. To determine the constrained modulus based on the cone resistance from CPTU tests, the knowledge of the α and αM coefficients is needed. For the tested soil, the optimal range of the α coefficient from 0.4 to 0.7 was determined. The αM coefficient ranged from 0.4 to 0.8. The value of the constrained modulus of organic soil obtained from the oedometer tests, depending on the effective stress, ranged from approximately 100 kPa to 400 kPa. The constrained modulus of the tested soil decreased with depth, which both research methods proved.","PeriodicalId":297140,"journal":{"name":"The Baltic Journal of Road and Bridge Engineering","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130358568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dovydas Skrodenis, D. Čygas, Algis Pakalnis, Andrius Kairys
{"title":"Traffic Management Solutions at Roadwork Zones During Planned Special Events","authors":"Dovydas Skrodenis, D. Čygas, Algis Pakalnis, Andrius Kairys","doi":"10.7250/bjrbe.2021-16.522","DOIUrl":"https://doi.org/10.7250/bjrbe.2021-16.522","url":null,"abstract":"Planned special events (PSEs) attract more people than usual to specific areas, which leads to increased traffic flows and congestions on the roads. Roadwork zones are among the most vulnerable areas on the roads, where increased traffic can lead to congestion. In roadwork zones, the vehicle flow capacity is already lower than in the conventional situations without roadworks, but at the time of PSEs, these zones become difficult to pass if no attention is paid to the change of the traffic management scheme. This kind of events poses many threats for road authorities, thus, new traffic management systems should be considered. This paper analyzes 2 PSEs and one national celebration in Lithuania and a significant impact they have on the regular traffic flow. PSEs are taken into consideration as they attract traffic to a known place; however, national celebrations distort traffic along all roads and it is not known exactly, which roads will be congested the most. Since roadwork zones cause congestion problems even in conventional situations, this paper presents traffic capacity calculations at these road stretches during PSEs and considers how they change depending on the traffic management scheme.","PeriodicalId":297140,"journal":{"name":"The Baltic Journal of Road and Bridge Engineering","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128711927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marck Anthony Mora Quispe, L. Todisco, Hugo Corres Peiretti
{"title":"Design Basis of Movable Scaffolding Systems Following American and European Code Provisions and Recommendations","authors":"Marck Anthony Mora Quispe, L. Todisco, Hugo Corres Peiretti","doi":"10.7250/bjrbe.2021-16.528","DOIUrl":"https://doi.org/10.7250/bjrbe.2021-16.528","url":null,"abstract":"Construction of bridges span-by-span with Movable Scaffolding Systems (MSSs) is a very efficient and competitive technology. Normally used for spans between 25 and 70m, the technology has allowed reaching longer spans due to technological advances, specifically in bridge construction equipment. Thereby, the use of MSS has become widespread and well-accepted in a large number of locations across the USA and Europe. Nevertheless, despite its extended application, there is no single specific code provision that can explain, control, and give recommendations about all aspects of MSS during its design and usage. On the contrary, the information is spread over several documents. This paper aims at bridging this gap by providing an extensive review of code provisions and recommendations that can be valid for the MSS design. Applicability of these documents is discussed by analysing loads, safety factors, load combinations, limit states, as well as structural analysis and design. After this, a proposal of a design basis for MSS is presented for each aspect mentioned following provisions and recommendations of the considered codes.","PeriodicalId":297140,"journal":{"name":"The Baltic Journal of Road and Bridge Engineering","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116843672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}