{"title":"Wood Fly Ash Stabilized Road Base Layers with High Recycled Asphalt Pavement Content","authors":"P. Skels, V. Haritonovs, Edvards Pavlovskis","doi":"10.7250/bjrbe.2021-16.520","DOIUrl":"https://doi.org/10.7250/bjrbe.2021-16.520","url":null,"abstract":"Wood fly ash stabilised road base layers with high recycled asphalt pavements content was studied both at the laboratory and in-situ. The original recipe was chosen based on an actual stabilised pavement base layer design with cement CEM II/B-T 42.5R but optimised using wood fly ash. The existing road base layer from gravel was mixed with dolomite aggregate and recycled asphalt pavement, adding cement and wood fly ash at different proportions. The mixture was compacted at optimal water content according to the Standard Proctor test and further conditioned. Resistance to freezing and thawing of hydraulically bound mixtures was checked after 28 days of conditioning. Even 50 cycles of freezing and thawing were used. Test results indicated wood fly ash as an effective alternative to the typically used cement for road base stabilisation, including recycled asphalt pavement material. Three hydraulically bound mixtures were chosen for test sections in the pilot project. The project includes five different sections with three different hydraulic binder recipes. The performance of each section was evaluated.","PeriodicalId":297140,"journal":{"name":"The Baltic Journal of Road and Bridge Engineering","volume":"189 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133684258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Vaitkus, J. Gražulytė, Andrius Baltrušaitis, J. Židanavičiūtė, D. Čygas
{"title":"Long-Term Performance of Pavement Structures with Cold In-Place Recycled Base Course","authors":"A. Vaitkus, J. Gražulytė, Andrius Baltrušaitis, J. Židanavičiūtė, D. Čygas","doi":"10.7250/bjrbe.2021-16.523","DOIUrl":"https://doi.org/10.7250/bjrbe.2021-16.523","url":null,"abstract":"Properly designed and maintained asphalt pavements operate for ten to twenty-five years and have to be rehabilitated after that period. Cold in-place recycling has priority over all other rehabilitation methods since it is done without preheating and transportation of reclaimed asphalt pavement. Multiple researches on the performance of cold recycled mixtures have been done; however, it is unclear how the entire pavement structure (cold recycled asphalt pavement overlaid with asphalt mixture) performs depending on binding agents. The main objective of this research was to evaluate the performance of cold in-place recycled asphalt pavements considering binding agents (foamed bitumen in combination with cement or only cement) and figure out which binder leads to the best pavement performance. Three road sections rehabilitated in 2000, 2003, and 2005 were analysed. The performance of the entire pavement structure was evaluated in terms of the International Roughness Index, rut depth, and pavement surface distress in 2013 and 2017.","PeriodicalId":297140,"journal":{"name":"The Baltic Journal of Road and Bridge Engineering","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131108964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparison of Road Traffic Death and Injury Rates at Pedestrian Crossings in Europe","authors":"Julius Uhlmann","doi":"10.7250/bjrbe.2021-16.521","DOIUrl":"https://doi.org/10.7250/bjrbe.2021-16.521","url":null,"abstract":"For this study, accident statistics of 14 European countries were analysed for the number of fatalities and injuries occurring at pedestrian crossings from 2015 to 2017. The road traffic death rate (killed per 1 million inhabitants) and the road traffic injury rate (injured per 1 million inhabitants) at pedestrian crossings were calculated and compared. It was found that there are large differences between the European countries: The road traffic death rate at pedestrian crossings is the lowest in Great Britain and Germany and the highest in Poland and Lithuania. Statistical analysis showed a significant correlation between road traffic death and injury rates at pedestrian crossings.","PeriodicalId":297140,"journal":{"name":"The Baltic Journal of Road and Bridge Engineering","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124078605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cable-Stayed Bridge Loads Caused by Traffic Congestion on the Deck Measured with Bridge Monitoring System","authors":"C. Machelski, M. Hildebrand","doi":"10.7250/bjrbe.2021-16.524","DOIUrl":"https://doi.org/10.7250/bjrbe.2021-16.524","url":null,"abstract":"Structural safety of a bridge depends, among other things, on the number of vehicles passing on its deck, their weights and distribution of loads to their axes. A large number of vehicles can accumulate on the bridge in a controlled state, i.e., during an acceptance test including load testing, and during traffic congestion on the bridge, which is a fortuitous event addressed in this paper. The paper deals with the analysis of load intensity on one bridge carriageway when it is fully and randomly filled during traffic congestion. The influence functions of the forces in the cables are used to determine the effects of loads exerted by the vehicles moving at very low speed. Effects of such loads are studied considering an exemplary cable-stayed bridge. Since the measurement basis was limited, the iterative algorithm was used. It consists in shortening the girder sections under analysis to the area appropriate for determining the load in each successive step of iteration. Ineffectiveness of the traditional algorithm, where the determined system of equations is resolved, is an important premise for using such algorithm. The results of numerical analysis show that the load intensity caused by traffic congestion is relatively high. It has been demonstrated that the matrix method may be successfully used to determine the real load of bridges on the basis of selected parameters measured in the bridge structure, also for complex scheme bridges, including the cable-stayed bridges.","PeriodicalId":297140,"journal":{"name":"The Baltic Journal of Road and Bridge Engineering","volume":"40 33","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120865546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical Modelling of Displacement Pile Resistance in Sand Ground. Part 1: Soil Physical Model, Calibration of Model Parameters","authors":"V. Martinkus, A. Norkus, D. Nagrockienė","doi":"10.7250/BJRBE.2021-16.516","DOIUrl":"https://doi.org/10.7250/BJRBE.2021-16.516","url":null,"abstract":"Accuracy of numerical modelling of ground resistance of the displacement pile highly depends on proper evaluation of its states: prior loading and its changes during the loading. Evaluation of initial ground stage, its subsequent changes caused by pile installation and, finally, evolution of the loaded pile resistance are the modelling stages that require validation with specialized test results performed under controlled laboratory conditions. Selection of the proper physical soil model and its parameters should be also done in accordance with the relevant soil tests results. The first paper briefly introduces testing results of a displacement pile prototype. Tests were conducted in the created sand deposit in the laboratory pit. Determining pile resistance and ground stress-strain distribution in the vicinity of the pile allows selecting the physical model for the soil. Numerical calibration of the parameters for the physical model of the selected soil was performed. The second, following paper will introduce analyses of pile resistance. It involves creation of a discrete model and its parameters, numerical modelling of pile resistance against vertical load. The pile ground resistance modelling applying the physical model of the selected soil includes the following stages: evaluation at rest stage and assessment of residual effects of installation and displacement pile loading resistance. Numerical analyses results were validated with displacement pile prototype testing results.","PeriodicalId":297140,"journal":{"name":"The Baltic Journal of Road and Bridge Engineering","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122526574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of Traffic Load Randomness on Fatigue of Steel Bridges","authors":"A. Wysokowski","doi":"10.7250/bjrbe.2020-15.505","DOIUrl":"https://doi.org/10.7250/bjrbe.2020-15.505","url":null,"abstract":"The article considers the influence of the randomness of traffic load on the fatigue of elements of steel bridge structures. The phenomenon occurs specifically in the case of bridges characterized by significant width, with many traffic lanes and a high vehicle velocity, especially in the case of heavy goods vehicles. It has been shown that underestimation of operational durability, including fatigue durability, can be up to 23%. Operational loads increase due to the overlapping of traffic loads, which leads to the increased fatigue of elements of steel bridge structures. In an effort to assess this influence and its value, elements of the problem of the randomness of road traffic loads were compiled and described, and a simulative analysis of the operational strength of various lengths (spans) of the main girders of bridges was carried out. The analyses showed that for the structures with spans length of up to 10.0 m, the influence of passing vehicles could be skipped in calculations, especially in the case of weak traffic.","PeriodicalId":297140,"journal":{"name":"The Baltic Journal of Road and Bridge Engineering","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123838849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Life Cycle Cost Analysis and Life Cycle Assessment for Road Pavement Materials and Reconstruction Technologies","authors":"A. Riekstiņš, V. Haritonovs, V. Straupe","doi":"10.7250/bjrbe.2020-15.510","DOIUrl":"https://doi.org/10.7250/bjrbe.2020-15.510","url":null,"abstract":"With limited funding and a desire to reduce environmental impact, there is a lot of pressure on road Authorities to develop decision making policy to manage better, build and maintain the road network sustainability. One of the solutions is to use various life cycle analyses. Numerous tools are available for different analyses, but they usually evaluate the construction from one perspective (economical, environmental, or social). Therefore, it was decided to develop a tool, which combines economic (Life Cycle Cost Analysis) and environmental (Life Cycle Assessment) analyses. The given study presents the methodology of the self-developed calculation program, which compare full-depth road constructions. Paper also shows shortcomings when calculation does not include all life cycle processes. In this study, five different road pavement constructions and reconstruction plans were compared. The difference between these pavements was in the layer thickness, recycled asphalt content in asphalt layers and the use of cement or fly ash in the road base layers. The results showed that the full depth reclamation technology in comparison to the full-depth removal and replacement reduce emissions by 60% and costs by 50%.","PeriodicalId":297140,"journal":{"name":"The Baltic Journal of Road and Bridge Engineering","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124226153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanistic Responses of Asphalt Concrete Overlay Over Jointed Plain Concrete Pavement Using Finite Element Method","authors":"A. Diallo, M. Akpınar","doi":"10.7250/bjrbe.2020-15.508","DOIUrl":"https://doi.org/10.7250/bjrbe.2020-15.508","url":null,"abstract":"This study focused on the development of a three-dimensional Finite Element Model of an asphalt concrete overlaid on a jointed plain concrete pavement to assess the mechanical behaviour of the pavement under traffic load. The objective of this study was to determine the influence of different asphalt concrete thickness, asphalt concrete modulus, the interface bond between the asphalt concrete and the Portland cement concrete layer, Portland cement concrete modulus, and joint width on the tensile strain at the bottom of the asphalt overlay. The results showed that changes in the pavement parameters result in a large range of variations on the magnitude of pavement responses. The magnitude of the longitudinal tensile strain at the bottom of the overlay varied between 25 με and 460 με. Asphalt concrete thickness, interface contact condition, and asphalt concrete modulus parameters had the most influence on the pavement responses. The interface bonding condition was significant, regardless of the thickness of the surface layer.","PeriodicalId":297140,"journal":{"name":"The Baltic Journal of Road and Bridge Engineering","volume":"61 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128337467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Case Study on the Effect of Recycled Asphalt Layer Parameters on the Bearing Capacity of the Pavement","authors":"A. Zariņš","doi":"10.7250/bjrbe.2020-15.506","DOIUrl":"https://doi.org/10.7250/bjrbe.2020-15.506","url":null,"abstract":"Numerous ways to use recycled asphalt (RA) in the road base course will provide both environmental and economic benefits, allowing to recycle and utilise this initially waste material in road or pavement reconstruction projects. However, the properties and parameters of RA necessary for the application of reclaimed asphalt pavement (RAP) in a new pavement structure in most cases are not detectable in the design stage, which complicates design and construction process. The purpose of this paper is to study possibilities for evaluating the performance and parameters of RA, as well as to review the possibilities, methods and applications for RA testing. Data for this case study were obtained from recently completed road structures in the form of FWD measurements, together with lab explored parameters of drilled pavement cores. Based on that data, the relationships between the main pavement structural parameters, such as modulus on the surface of the pavement, compressive strength of RA core segment, thickness of bound layers and back calculated modulus were examined. On the way to exploring different analytical approaches, two approximation models were developed and compared, using the obtained data: by directly approximating the obtained data and after processing them with artificial neural network (ANN).","PeriodicalId":297140,"journal":{"name":"The Baltic Journal of Road and Bridge Engineering","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115404438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Alternative Formula for Rigid Pavement Stress Calculation in Corner Load Conditions","authors":"S. Olita, M. Diomedi, D. Ciampa","doi":"10.7250/bjrbe.2020-15.507","DOIUrl":"https://doi.org/10.7250/bjrbe.2020-15.507","url":null,"abstract":"The design of rigid pavements is historically based on the classical Theory of proposed by Westergaard in 1929, which considers the rigid pavement as a thin plate resting on an elastic ground with a Winkler reaction, imposing the congruence of vertical displacements at the points of contact between the pavement structure and the ground. Westergaard’s Theory provides expressions for the calculation of maximum stress in concrete slabs for interior, edge and corner load conditions. This work focuses on the development of a Finite Element model, implemented in the ANSYS® environment and calibrated on the basis of the results of the in-scale experimental model developed by Lall and Lees in 1983. The implementation of the FE model was performed through a set of steps capable of reproducing physical and mechanical conditions of the true model, which was further intended to be used for numerical analysis. After the FE model was developed, it was possible to carry out multiple simulations pursuing three main aims: to evaluate the effect of the variation of material properties on the slab stress state, to compare the maximum stresses for the interior and edge load conditions considering Westergaard’s Theory, the experimental data and the results of the numerical model, and to use the developed and calibrated model to formulate an alternative mathematical expression, which would allow calculating the stress in corner load conditions.","PeriodicalId":297140,"journal":{"name":"The Baltic Journal of Road and Bridge Engineering","volume":"96 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121418470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}