Topology, Geometry, and Dynamics最新文献

筛选
英文 中文
Circular orders, ultra-homogeneous order structures, and their automorphism groups 圆序、超齐次序结构及其自同构群
Topology, Geometry, and Dynamics Pub Date : 2018-03-17 DOI: 10.1090/conm/772/15486
E. Glasner, M. Megrelishvili
{"title":"Circular orders, ultra-homogeneous order structures, and their automorphism groups","authors":"E. Glasner, M. Megrelishvili","doi":"10.1090/conm/772/15486","DOIUrl":"https://doi.org/10.1090/conm/772/15486","url":null,"abstract":"<p>We study topological groups <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\u0000 <mml:semantics>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> for which either the universal minimal <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\u0000 <mml:semantics>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-system <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M left-parenthesis upper G right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>M</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">M(G)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> or the universal irreducible affine <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\u0000 <mml:semantics>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-system <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I upper A left-parenthesis upper G right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>I</mml:mi>\u0000 <mml:mspace width=\"negativethinmathspace\" />\u0000 <mml:mi>A</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">I!A(G)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is tame. We call such groups “intrinsically tame” and “convexly intrinsically tame”, respectively. These notions, which were introduced in [<italic>Ergodic theory and dynamical systems in their interactions with arithmetics and combinatorics</italic>, Springer, Cham, 2018, pp. 351–392], are generalized versions of extreme amenability and amenability, respectively. When <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M left-parenthesis upper G right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>M</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">M(G)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, as a <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\u0000 <mml:semantics>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:annotation enc","PeriodicalId":296603,"journal":{"name":"Topology, Geometry, and Dynamics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133995385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
V. A. Rokhlin (23 August 1919–3 December 1984), materials for the biography v·a·罗克林(1919年8月23日- 1984年12月3日),传记材料
Topology, Geometry, and Dynamics Pub Date : 1900-01-01 DOI: 10.1090/conm/772/15479
A. Vershik
{"title":"V. A. Rokhlin (23 August 1919–3 December 1984), materials for the biography","authors":"A. Vershik","doi":"10.1090/conm/772/15479","DOIUrl":"https://doi.org/10.1090/conm/772/15479","url":null,"abstract":"This publication presents some facts and documents related to the biography of the remarkable mathematician Vladimir Abramovich Rokhlin.","PeriodicalId":296603,"journal":{"name":"Topology, Geometry, and Dynamics","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125259709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discreteness of deformations of cocompact discrete subgroups 紧离散子群变形的离散性
Topology, Geometry, and Dynamics Pub Date : 1900-01-01 DOI: 10.1090/conm/772/15492
G. Margulis, G. Soifer
{"title":"Discreteness of deformations of cocompact discrete subgroups","authors":"G. Margulis, G. Soifer","doi":"10.1090/conm/772/15492","DOIUrl":"https://doi.org/10.1090/conm/772/15492","url":null,"abstract":"We prove the discreteness of small deformations of a discrete cocompact subgroup of isometries of a locally compact metric space under some natural restrictions.","PeriodicalId":296603,"journal":{"name":"Topology, Geometry, and Dynamics","volume":"201 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131811863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vladimir Abramovich Rokhlin and algebraic topology Vladimir Abramovich Rokhlin与代数拓扑
Topology, Geometry, and Dynamics Pub Date : 1900-01-01 DOI: 10.1090/conm/772/15481
V. Buchstaber
{"title":"Vladimir Abramovich Rokhlin and algebraic topology","authors":"V. Buchstaber","doi":"10.1090/conm/772/15481","DOIUrl":"https://doi.org/10.1090/conm/772/15481","url":null,"abstract":"The article considers the scientific heritage of V. A. Rokhlin in algebraic topology from the point of view of the modern development of mathematics and shows the influence of his results on the development of algebraic topology up to the present. The second part of the article contains new results with fairly detailed sketches of their proofs. There we introduce the notion of partially framed manifolds, which naturally arise in the study of the characteristic classes of vector bundles over the loop space \u0000\u0000 \u0000 \u0000 Ω\u0000 S\u0000 U\u0000 (\u0000 2\u0000 )\u0000 =\u0000 Ω\u0000 S\u0000 P\u0000 (\u0000 1\u0000 )\u0000 \u0000 Omega SU(2)=Omega SP(1)\u0000 \u0000\u0000. We obtain theorems on the divisibility of the signature of such manifolds as a result of calculations of characteristic classes with values in complex and quaternionic cobordism.","PeriodicalId":296603,"journal":{"name":"Topology, Geometry, and Dynamics","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116672734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rokhlin’s theorem, a problem and a conjecture 罗克林定理,一个问题和一个猜想
Topology, Geometry, and Dynamics Pub Date : 1900-01-01 DOI: 10.1090/conm/772/15497
D. Sullivan
{"title":"Rokhlin’s theorem, a problem and a conjecture","authors":"D. Sullivan","doi":"10.1090/conm/772/15497","DOIUrl":"https://doi.org/10.1090/conm/772/15497","url":null,"abstract":"","PeriodicalId":296603,"journal":{"name":"Topology, Geometry, and Dynamics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124368069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Group actions: Entropy, mixing, spectra, and generic properties 群作用:熵、混合、光谱和一般性质
Topology, Geometry, and Dynamics Pub Date : 1900-01-01 DOI: 10.1090/conm/772/15496
A. Stepin, S. Tikhonov
{"title":"Group actions: Entropy, mixing, spectra, and generic properties","authors":"A. Stepin, S. Tikhonov","doi":"10.1090/conm/772/15496","DOIUrl":"https://doi.org/10.1090/conm/772/15496","url":null,"abstract":"We talk about several directions of V. Rokhlin’s heritage in ergodic theory: ideas that influenced the further development of investigations (genericity, approximations), problems put forward by V. Rokhlin in his papers, problems that V. Rokhlin put forward verbally (in particular, the question about homogeneous spectrum of finite multiplicity). We touch upon the directions close to the authors of this text and their school. Many of the questions raised by Rokhlin have analogs for different classes of transformations, for group actions, and versions about the genericity of properties appearing in these formulations. We will consider the corresponding topics in such a generalized sense.","PeriodicalId":296603,"journal":{"name":"Topology, Geometry, and Dynamics","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124991890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Geometric description of the Hochschild cohomology of group algebras 群代数Hochschild上同调的几何描述
Topology, Geometry, and Dynamics Pub Date : 1900-01-01 DOI: 10.1090/conm/772/15494
A. Mishchenko
{"title":"Geometric description of the Hochschild cohomology of group algebras","authors":"A. Mishchenko","doi":"10.1090/conm/772/15494","DOIUrl":"https://doi.org/10.1090/conm/772/15494","url":null,"abstract":"<p>There are two approaches to the study of the cohomology of group algebras <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R left-bracket upper G right-bracket\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>R</mml:mi>\u0000 <mml:mo stretchy=\"false\">[</mml:mo>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:mo stretchy=\"false\">]</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">R[G]</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, the Eilenberg–MacLane cohomology and the Hochschild cohomology. The Eilenberg–MacLane cohomology gives the classical cohomology of the classifying space <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B upper G\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>B</mml:mi>\u0000 <mml:mi>G</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">BG</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> (or the Eilenberg–MacLane complex <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K left-parenthesis upper G comma 1 right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">K(G,1)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>). Note that the space <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B upper G\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>B</mml:mi>\u0000 <mml:mi>G</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">BG</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> can be interpreted as a classifying space of the groupoid of the trivial action of the group <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\u0000 <mml:semantics>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>.</p>\u0000\u0000<p>The Hochschild cohomology is a more general construction, which considers the so-called bimodules of the algebra <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R left-bracket upper G right-bracket\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>R</mml:mi>\u0000 <mml:mo stretchy=\"false\">[</mml:mo>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:mo stretchy=\"false\">]</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">R[G]</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and their derivative functors <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmln","PeriodicalId":296603,"journal":{"name":"Topology, Geometry, and Dynamics","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125712216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Teaching mathematics to non-mathematicians 向非数学家教授数学
Topology, Geometry, and Dynamics Pub Date : 1900-01-01 DOI: 10.1090/conm/772/15480
V. Rokhlin
{"title":"Teaching mathematics to non-mathematicians","authors":"V. Rokhlin","doi":"10.1090/conm/772/15480","DOIUrl":"https://doi.org/10.1090/conm/772/15480","url":null,"abstract":"","PeriodicalId":296603,"journal":{"name":"Topology, Geometry, and Dynamics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130729278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信