{"title":"Geometric description of the Hochschild cohomology of group algebras","authors":"A. Mishchenko","doi":"10.1090/conm/772/15494","DOIUrl":null,"url":null,"abstract":"<p>There are two approaches to the study of the cohomology of group algebras <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R left-bracket upper G right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>R</mml:mi>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">R[G]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, the Eilenberg–MacLane cohomology and the Hochschild cohomology. The Eilenberg–MacLane cohomology gives the classical cohomology of the classifying space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B upper G\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>B</mml:mi>\n <mml:mi>G</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">BG</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> (or the Eilenberg–MacLane complex <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K left-parenthesis upper G comma 1 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>K</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">K(G,1)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>). Note that the space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B upper G\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>B</mml:mi>\n <mml:mi>G</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">BG</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> can be interpreted as a classifying space of the groupoid of the trivial action of the group <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>\n\n<p>The Hochschild cohomology is a more general construction, which considers the so-called bimodules of the algebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R left-bracket upper G right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>R</mml:mi>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">R[G]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and their derivative functors <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E x t left-parenthesis upper R left-bracket upper G right-bracket comma upper M right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>Ext</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>R</mml:mi>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mi>M</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\operatorname {Ext}(R[G],M)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, for which no geometric interpretation has been known so far.</p>\n\n<p>The key point for calculating the Hochschild cohomology <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H upper H Superscript asterisk Baseline left-parenthesis upper R left-bracket upper G right-bracket right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>H</mml:mi>\n <mml:msup>\n <mml:mi>H</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>R</mml:mi>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">HH^*(R[G])</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the new groupoid <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G r\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>G</mml:mi>\n <mml:mi>r</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Gr</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> associated with the adjoint action of the group <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. For this groupoid, the classical cohomology of the corresponding classification space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B upper G r\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>B</mml:mi>\n <mml:mi>G</mml:mi>\n <mml:mi>r</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">BGr</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with the finiteness condition for the supports of cochains is isomorphic to the Hochschild cohomology of the algebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R left-bracket upper G right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>R</mml:mi>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">R[G]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>: <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H upper H Superscript asterisk Baseline left-parenthesis upper R left-bracket upper G right-bracket right-parenthesis almost-equals upper H Subscript f Superscript asterisk Baseline left-parenthesis upper B upper G r right-parenthesis period\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>H</mml:mi>\n <mml:msup>\n <mml:mi>H</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>R</mml:mi>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>≈<!-- ≈ --></mml:mo>\n <mml:msubsup>\n <mml:mi>H</mml:mi>\n <mml:mi>f</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>B</mml:mi>\n <mml:mi>G</mml:mi>\n <mml:mi>r</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>.</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} HH^*(R[G])\\approx H^*_f(BGr). \\end{equation*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula></p>\n\n<p>This result represents a fundamental contribution to understanding the geometry of the cohomological properties of group algebras, in particular, understanding the differences between the homology and cohomology of group algebras.</p>\n\n<p>The paper is devoted to the motivation of the Hochschild (co)homology group of the group algebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R left-bracket upper G right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>R</mml:mi>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">R[G]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and its description in terms of the classical (co)homology of the classifying space of the groupoid of the adjoint action of the original group <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> under a suitable finiteness assumption on the supports of the cohomology group.</p>","PeriodicalId":296603,"journal":{"name":"Topology, Geometry, and Dynamics","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology, Geometry, and Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/772/15494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
There are two approaches to the study of the cohomology of group algebras R[G]R[G], the Eilenberg–MacLane cohomology and the Hochschild cohomology. The Eilenberg–MacLane cohomology gives the classical cohomology of the classifying space BGBG (or the Eilenberg–MacLane complex K(G,1)K(G,1)). Note that the space BGBG can be interpreted as a classifying space of the groupoid of the trivial action of the group GG.
The Hochschild cohomology is a more general construction, which considers the so-called bimodules of the algebra R[G]R[G] and their derivative functors Ext(R[G],M)\operatorname {Ext}(R[G],M), for which no geometric interpretation has been known so far.
The key point for calculating the Hochschild cohomology HH∗(R[G])HH^*(R[G]) is the new groupoid GrGr associated with the adjoint action of the group GG. For this groupoid, the classical cohomology of the corresponding classification space BGrBGr with the finiteness condition for the supports of cochains is isomorphic to the Hochschild cohomology of the algebra R[G]R[G]: HH∗(R[G])≈Hf∗(BGr).\begin{equation*} HH^*(R[G])\approx H^*_f(BGr). \end{equation*}
This result represents a fundamental contribution to understanding the geometry of the cohomological properties of group algebras, in particular, understanding the differences between the homology and cohomology of group algebras.
The paper is devoted to the motivation of the Hochschild (co)homology group of the group algebra R[G]R[G] and its description in terms of the classical (co)homology of the classifying space of the groupoid of the adjoint action of the original group GG under a suitable finiteness assumption on the supports of the cohomology group.