{"title":"群代数Hochschild上同调的几何描述","authors":"A. Mishchenko","doi":"10.1090/conm/772/15494","DOIUrl":null,"url":null,"abstract":"<p>There are two approaches to the study of the cohomology of group algebras <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R left-bracket upper G right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>R</mml:mi>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">R[G]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, the Eilenberg–MacLane cohomology and the Hochschild cohomology. The Eilenberg–MacLane cohomology gives the classical cohomology of the classifying space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B upper G\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>B</mml:mi>\n <mml:mi>G</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">BG</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> (or the Eilenberg–MacLane complex <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K left-parenthesis upper G comma 1 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>K</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">K(G,1)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>). Note that the space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B upper G\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>B</mml:mi>\n <mml:mi>G</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">BG</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> can be interpreted as a classifying space of the groupoid of the trivial action of the group <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>\n\n<p>The Hochschild cohomology is a more general construction, which considers the so-called bimodules of the algebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R left-bracket upper G right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>R</mml:mi>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">R[G]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and their derivative functors <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E x t left-parenthesis upper R left-bracket upper G right-bracket comma upper M right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>Ext</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>R</mml:mi>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mi>M</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\operatorname {Ext}(R[G],M)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, for which no geometric interpretation has been known so far.</p>\n\n<p>The key point for calculating the Hochschild cohomology <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H upper H Superscript asterisk Baseline left-parenthesis upper R left-bracket upper G right-bracket right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>H</mml:mi>\n <mml:msup>\n <mml:mi>H</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>R</mml:mi>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">HH^*(R[G])</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the new groupoid <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G r\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>G</mml:mi>\n <mml:mi>r</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Gr</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> associated with the adjoint action of the group <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. For this groupoid, the classical cohomology of the corresponding classification space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B upper G r\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>B</mml:mi>\n <mml:mi>G</mml:mi>\n <mml:mi>r</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">BGr</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with the finiteness condition for the supports of cochains is isomorphic to the Hochschild cohomology of the algebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R left-bracket upper G right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>R</mml:mi>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">R[G]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>: <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H upper H Superscript asterisk Baseline left-parenthesis upper R left-bracket upper G right-bracket right-parenthesis almost-equals upper H Subscript f Superscript asterisk Baseline left-parenthesis upper B upper G r right-parenthesis period\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>H</mml:mi>\n <mml:msup>\n <mml:mi>H</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>R</mml:mi>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>≈<!-- ≈ --></mml:mo>\n <mml:msubsup>\n <mml:mi>H</mml:mi>\n <mml:mi>f</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>B</mml:mi>\n <mml:mi>G</mml:mi>\n <mml:mi>r</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>.</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} HH^*(R[G])\\approx H^*_f(BGr). \\end{equation*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula></p>\n\n<p>This result represents a fundamental contribution to understanding the geometry of the cohomological properties of group algebras, in particular, understanding the differences between the homology and cohomology of group algebras.</p>\n\n<p>The paper is devoted to the motivation of the Hochschild (co)homology group of the group algebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R left-bracket upper G right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>R</mml:mi>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">R[G]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and its description in terms of the classical (co)homology of the classifying space of the groupoid of the adjoint action of the original group <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> under a suitable finiteness assumption on the supports of the cohomology group.</p>","PeriodicalId":296603,"journal":{"name":"Topology, Geometry, and Dynamics","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Geometric description of the Hochschild cohomology of group algebras\",\"authors\":\"A. Mishchenko\",\"doi\":\"10.1090/conm/772/15494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There are two approaches to the study of the cohomology of group algebras <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper R left-bracket upper G right-bracket\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>R</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">]</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">R[G]</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, the Eilenberg–MacLane cohomology and the Hochschild cohomology. The Eilenberg–MacLane cohomology gives the classical cohomology of the classifying space <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper B upper G\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>B</mml:mi>\\n <mml:mi>G</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">BG</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> (or the Eilenberg–MacLane complex <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K left-parenthesis upper G comma 1 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>K</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">K(G,1)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>). Note that the space <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper B upper G\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>B</mml:mi>\\n <mml:mi>G</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">BG</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> can be interpreted as a classifying space of the groupoid of the trivial action of the group <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>.</p>\\n\\n<p>The Hochschild cohomology is a more general construction, which considers the so-called bimodules of the algebra <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper R left-bracket upper G right-bracket\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>R</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">]</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">R[G]</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and their derivative functors <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E x t left-parenthesis upper R left-bracket upper G right-bracket comma upper M right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>Ext</mml:mi>\\n <mml:mo><!-- --></mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>R</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">]</mml:mo>\\n <mml:mo>,</mml:mo>\\n <mml:mi>M</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\operatorname {Ext}(R[G],M)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, for which no geometric interpretation has been known so far.</p>\\n\\n<p>The key point for calculating the Hochschild cohomology <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H upper H Superscript asterisk Baseline left-parenthesis upper R left-bracket upper G right-bracket right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>H</mml:mi>\\n <mml:msup>\\n <mml:mi>H</mml:mi>\\n <mml:mo>∗<!-- ∗ --></mml:mo>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>R</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">]</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">HH^*(R[G])</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is the new groupoid <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G r\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>G</mml:mi>\\n <mml:mi>r</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Gr</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> associated with the adjoint action of the group <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. For this groupoid, the classical cohomology of the corresponding classification space <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper B upper G r\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>B</mml:mi>\\n <mml:mi>G</mml:mi>\\n <mml:mi>r</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">BGr</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> with the finiteness condition for the supports of cochains is isomorphic to the Hochschild cohomology of the algebra <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper R left-bracket upper G right-bracket\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>R</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">]</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">R[G]</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>: <disp-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H upper H Superscript asterisk Baseline left-parenthesis upper R left-bracket upper G right-bracket right-parenthesis almost-equals upper H Subscript f Superscript asterisk Baseline left-parenthesis upper B upper G r right-parenthesis period\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>H</mml:mi>\\n <mml:msup>\\n <mml:mi>H</mml:mi>\\n <mml:mo>∗<!-- ∗ --></mml:mo>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>R</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">]</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>≈<!-- ≈ --></mml:mo>\\n <mml:msubsup>\\n <mml:mi>H</mml:mi>\\n <mml:mi>f</mml:mi>\\n <mml:mo>∗<!-- ∗ --></mml:mo>\\n </mml:msubsup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>B</mml:mi>\\n <mml:mi>G</mml:mi>\\n <mml:mi>r</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>.</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\begin{equation*} HH^*(R[G])\\\\approx H^*_f(BGr). \\\\end{equation*}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</disp-formula></p>\\n\\n<p>This result represents a fundamental contribution to understanding the geometry of the cohomological properties of group algebras, in particular, understanding the differences between the homology and cohomology of group algebras.</p>\\n\\n<p>The paper is devoted to the motivation of the Hochschild (co)homology group of the group algebra <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper R left-bracket upper G right-bracket\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>R</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">]</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">R[G]</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and its description in terms of the classical (co)homology of the classifying space of the groupoid of the adjoint action of the original group <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> under a suitable finiteness assumption on the supports of the cohomology group.</p>\",\"PeriodicalId\":296603,\"journal\":{\"name\":\"Topology, Geometry, and Dynamics\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology, Geometry, and Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/conm/772/15494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology, Geometry, and Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/772/15494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
群代数R[G] R[G]的上同调有两种研究方法,即Eilenberg-MacLane上同调和Hochschild上同调。Eilenberg-MacLane上同调给出了分类空间B - G - BG(或Eilenberg-MacLane复合体K(G,1) K(G,1))的经典上同调。注意,空间BG G BG可以被解释为群G的平凡作用群的类群的一个分类空间。Hochschild上同调是一个更一般的构造,它考虑了代数R[G] R[G]及其导数函子Ext(R[G],M) \operatorname Ext{(R[G],M)的所谓双模,到目前为止还没有任何几何解释。计算Hochschild上同调HH∗(R[G]) HH^*(R[G])的关键是与群G G的伴随作用相关的新类群G R Gr。对于这个类群,相应分类空间BGr BGr的经典上同构与代数r [G] r [G]的Hochschild上同构:H H∗(r [G])≈H f∗(BGr)。}\begin{equation*} HH^*(R[G])\approx H^*_f(BGr). \end{equation*}这一结果对理解群代数的上同调性质的几何性质,特别是对群代数的同调和上同调之间的区别作出了根本性的贡献。本文研究了群代数R[G] R[G]的Hochschild (co)同调群的动机,以及在同调群的支持下,在适当的有限性假设下,用原群G的伴作用群的类群的分类空间的经典(co)同调来描述它。
Geometric description of the Hochschild cohomology of group algebras
There are two approaches to the study of the cohomology of group algebras R[G]R[G], the Eilenberg–MacLane cohomology and the Hochschild cohomology. The Eilenberg–MacLane cohomology gives the classical cohomology of the classifying space BGBG (or the Eilenberg–MacLane complex K(G,1)K(G,1)). Note that the space BGBG can be interpreted as a classifying space of the groupoid of the trivial action of the group GG.
The Hochschild cohomology is a more general construction, which considers the so-called bimodules of the algebra R[G]R[G] and their derivative functors Ext(R[G],M)\operatorname {Ext}(R[G],M), for which no geometric interpretation has been known so far.
The key point for calculating the Hochschild cohomology HH∗(R[G])HH^*(R[G]) is the new groupoid GrGr associated with the adjoint action of the group GG. For this groupoid, the classical cohomology of the corresponding classification space BGrBGr with the finiteness condition for the supports of cochains is isomorphic to the Hochschild cohomology of the algebra R[G]R[G]: HH∗(R[G])≈Hf∗(BGr).\begin{equation*} HH^*(R[G])\approx H^*_f(BGr). \end{equation*}
This result represents a fundamental contribution to understanding the geometry of the cohomological properties of group algebras, in particular, understanding the differences between the homology and cohomology of group algebras.
The paper is devoted to the motivation of the Hochschild (co)homology group of the group algebra R[G]R[G] and its description in terms of the classical (co)homology of the classifying space of the groupoid of the adjoint action of the original group GG under a suitable finiteness assumption on the supports of the cohomology group.