群代数Hochschild上同调的几何描述

A. Mishchenko
{"title":"群代数Hochschild上同调的几何描述","authors":"A. Mishchenko","doi":"10.1090/conm/772/15494","DOIUrl":null,"url":null,"abstract":"<p>There are two approaches to the study of the cohomology of group algebras <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R left-bracket upper G right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>R</mml:mi>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">R[G]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, the Eilenberg–MacLane cohomology and the Hochschild cohomology. The Eilenberg–MacLane cohomology gives the classical cohomology of the classifying space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B upper G\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>B</mml:mi>\n <mml:mi>G</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">BG</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> (or the Eilenberg–MacLane complex <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K left-parenthesis upper G comma 1 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>K</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">K(G,1)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>). Note that the space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B upper G\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>B</mml:mi>\n <mml:mi>G</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">BG</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> can be interpreted as a classifying space of the groupoid of the trivial action of the group <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>\n\n<p>The Hochschild cohomology is a more general construction, which considers the so-called bimodules of the algebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R left-bracket upper G right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>R</mml:mi>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">R[G]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and their derivative functors <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E x t left-parenthesis upper R left-bracket upper G right-bracket comma upper M right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>Ext</mml:mi>\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>R</mml:mi>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mi>M</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\operatorname {Ext}(R[G],M)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, for which no geometric interpretation has been known so far.</p>\n\n<p>The key point for calculating the Hochschild cohomology <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H upper H Superscript asterisk Baseline left-parenthesis upper R left-bracket upper G right-bracket right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>H</mml:mi>\n <mml:msup>\n <mml:mi>H</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>R</mml:mi>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">HH^*(R[G])</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the new groupoid <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G r\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>G</mml:mi>\n <mml:mi>r</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Gr</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> associated with the adjoint action of the group <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. For this groupoid, the classical cohomology of the corresponding classification space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B upper G r\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>B</mml:mi>\n <mml:mi>G</mml:mi>\n <mml:mi>r</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">BGr</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with the finiteness condition for the supports of cochains is isomorphic to the Hochschild cohomology of the algebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R left-bracket upper G right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>R</mml:mi>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">R[G]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>: <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H upper H Superscript asterisk Baseline left-parenthesis upper R left-bracket upper G right-bracket right-parenthesis almost-equals upper H Subscript f Superscript asterisk Baseline left-parenthesis upper B upper G r right-parenthesis period\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>H</mml:mi>\n <mml:msup>\n <mml:mi>H</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>R</mml:mi>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>≈<!-- ≈ --></mml:mo>\n <mml:msubsup>\n <mml:mi>H</mml:mi>\n <mml:mi>f</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>B</mml:mi>\n <mml:mi>G</mml:mi>\n <mml:mi>r</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>.</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} HH^*(R[G])\\approx H^*_f(BGr). \\end{equation*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula></p>\n\n<p>This result represents a fundamental contribution to understanding the geometry of the cohomological properties of group algebras, in particular, understanding the differences between the homology and cohomology of group algebras.</p>\n\n<p>The paper is devoted to the motivation of the Hochschild (co)homology group of the group algebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R left-bracket upper G right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>R</mml:mi>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">R[G]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and its description in terms of the classical (co)homology of the classifying space of the groupoid of the adjoint action of the original group <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> under a suitable finiteness assumption on the supports of the cohomology group.</p>","PeriodicalId":296603,"journal":{"name":"Topology, Geometry, and Dynamics","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Geometric description of the Hochschild cohomology of group algebras\",\"authors\":\"A. Mishchenko\",\"doi\":\"10.1090/conm/772/15494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There are two approaches to the study of the cohomology of group algebras <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper R left-bracket upper G right-bracket\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>R</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">]</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">R[G]</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, the Eilenberg–MacLane cohomology and the Hochschild cohomology. The Eilenberg–MacLane cohomology gives the classical cohomology of the classifying space <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper B upper G\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>B</mml:mi>\\n <mml:mi>G</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">BG</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> (or the Eilenberg–MacLane complex <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K left-parenthesis upper G comma 1 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>K</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">K(G,1)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>). Note that the space <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper B upper G\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>B</mml:mi>\\n <mml:mi>G</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">BG</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> can be interpreted as a classifying space of the groupoid of the trivial action of the group <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>.</p>\\n\\n<p>The Hochschild cohomology is a more general construction, which considers the so-called bimodules of the algebra <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper R left-bracket upper G right-bracket\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>R</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">]</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">R[G]</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and their derivative functors <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E x t left-parenthesis upper R left-bracket upper G right-bracket comma upper M right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>Ext</mml:mi>\\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>R</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">]</mml:mo>\\n <mml:mo>,</mml:mo>\\n <mml:mi>M</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\operatorname {Ext}(R[G],M)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, for which no geometric interpretation has been known so far.</p>\\n\\n<p>The key point for calculating the Hochschild cohomology <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H upper H Superscript asterisk Baseline left-parenthesis upper R left-bracket upper G right-bracket right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>H</mml:mi>\\n <mml:msup>\\n <mml:mi>H</mml:mi>\\n <mml:mo>∗<!-- ∗ --></mml:mo>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>R</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">]</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">HH^*(R[G])</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is the new groupoid <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G r\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>G</mml:mi>\\n <mml:mi>r</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Gr</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> associated with the adjoint action of the group <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. For this groupoid, the classical cohomology of the corresponding classification space <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper B upper G r\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>B</mml:mi>\\n <mml:mi>G</mml:mi>\\n <mml:mi>r</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">BGr</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> with the finiteness condition for the supports of cochains is isomorphic to the Hochschild cohomology of the algebra <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper R left-bracket upper G right-bracket\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>R</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">]</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">R[G]</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>: <disp-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H upper H Superscript asterisk Baseline left-parenthesis upper R left-bracket upper G right-bracket right-parenthesis almost-equals upper H Subscript f Superscript asterisk Baseline left-parenthesis upper B upper G r right-parenthesis period\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>H</mml:mi>\\n <mml:msup>\\n <mml:mi>H</mml:mi>\\n <mml:mo>∗<!-- ∗ --></mml:mo>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>R</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">]</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>≈<!-- ≈ --></mml:mo>\\n <mml:msubsup>\\n <mml:mi>H</mml:mi>\\n <mml:mi>f</mml:mi>\\n <mml:mo>∗<!-- ∗ --></mml:mo>\\n </mml:msubsup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>B</mml:mi>\\n <mml:mi>G</mml:mi>\\n <mml:mi>r</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>.</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\begin{equation*} HH^*(R[G])\\\\approx H^*_f(BGr). \\\\end{equation*}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</disp-formula></p>\\n\\n<p>This result represents a fundamental contribution to understanding the geometry of the cohomological properties of group algebras, in particular, understanding the differences between the homology and cohomology of group algebras.</p>\\n\\n<p>The paper is devoted to the motivation of the Hochschild (co)homology group of the group algebra <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper R left-bracket upper G right-bracket\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>R</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">]</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">R[G]</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and its description in terms of the classical (co)homology of the classifying space of the groupoid of the adjoint action of the original group <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> under a suitable finiteness assumption on the supports of the cohomology group.</p>\",\"PeriodicalId\":296603,\"journal\":{\"name\":\"Topology, Geometry, and Dynamics\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology, Geometry, and Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/conm/772/15494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology, Geometry, and Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/772/15494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

群代数R[G] R[G]的上同调有两种研究方法,即Eilenberg-MacLane上同调和Hochschild上同调。Eilenberg-MacLane上同调给出了分类空间B - G - BG(或Eilenberg-MacLane复合体K(G,1) K(G,1))的经典上同调。注意,空间BG G BG可以被解释为群G的平凡作用群的类群的一个分类空间。Hochschild上同调是一个更一般的构造,它考虑了代数R[G] R[G]及其导数函子Ext(R[G],M) \operatorname Ext{(R[G],M)的所谓双模,到目前为止还没有任何几何解释。计算Hochschild上同调HH∗(R[G]) HH^*(R[G])的关键是与群G G的伴随作用相关的新类群G R Gr。对于这个类群,相应分类空间BGr BGr的经典上同构与代数r [G] r [G]的Hochschild上同构:H H∗(r [G])≈H f∗(BGr)。}\begin{equation*} HH^*(R[G])\approx H^*_f(BGr). \end{equation*}这一结果对理解群代数的上同调性质的几何性质,特别是对群代数的同调和上同调之间的区别作出了根本性的贡献。本文研究了群代数R[G] R[G]的Hochschild (co)同调群的动机,以及在同调群的支持下,在适当的有限性假设下,用原群G的伴作用群的类群的分类空间的经典(co)同调来描述它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric description of the Hochschild cohomology of group algebras

There are two approaches to the study of the cohomology of group algebras R [ G ] R[G] , the Eilenberg–MacLane cohomology and the Hochschild cohomology. The Eilenberg–MacLane cohomology gives the classical cohomology of the classifying space B G BG (or the Eilenberg–MacLane complex K ( G , 1 ) K(G,1) ). Note that the space B G BG can be interpreted as a classifying space of the groupoid of the trivial action of the group G G .

The Hochschild cohomology is a more general construction, which considers the so-called bimodules of the algebra R [ G ] R[G] and their derivative functors Ext ( R [ G ] , M ) \operatorname {Ext}(R[G],M) , for which no geometric interpretation has been known so far.

The key point for calculating the Hochschild cohomology H H ( R [ G ] ) HH^*(R[G]) is the new groupoid G r Gr associated with the adjoint action of the group G G . For this groupoid, the classical cohomology of the corresponding classification space B G r BGr with the finiteness condition for the supports of cochains is isomorphic to the Hochschild cohomology of the algebra R [ G ] R[G] : H H ( R [ G ] ) H f ( B G r ) . \begin{equation*} HH^*(R[G])\approx H^*_f(BGr). \end{equation*}

This result represents a fundamental contribution to understanding the geometry of the cohomological properties of group algebras, in particular, understanding the differences between the homology and cohomology of group algebras.

The paper is devoted to the motivation of the Hochschild (co)homology group of the group algebra R [ G ] R[G] and its description in terms of the classical (co)homology of the classifying space of the groupoid of the adjoint action of the original group G G under a suitable finiteness assumption on the supports of the cohomology group.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信