Circular orders, ultra-homogeneous order structures, and their automorphism groups

E. Glasner, M. Megrelishvili
{"title":"Circular orders, ultra-homogeneous order structures, and their automorphism groups","authors":"E. Glasner, M. Megrelishvili","doi":"10.1090/conm/772/15486","DOIUrl":null,"url":null,"abstract":"<p>We study topological groups <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for which either the universal minimal <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-system <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M left-parenthesis upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>M</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">M(G)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> or the universal irreducible affine <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-system <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I upper A left-parenthesis upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>I</mml:mi>\n <mml:mspace width=\"negativethinmathspace\" />\n <mml:mi>A</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">I\\!A(G)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is tame. We call such groups “intrinsically tame” and “convexly intrinsically tame”, respectively. These notions, which were introduced in [<italic>Ergodic theory and dynamical systems in their interactions with arithmetics and combinatorics</italic>, Springer, Cham, 2018, pp. 351–392], are generalized versions of extreme amenability and amenability, respectively. When <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M left-parenthesis upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>M</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">M(G)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, as a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-system, admits a circular order we say that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is intrinsically circularly ordered. This implies that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is intrinsically tame.</p>\n\n<p>We show that given a circularly ordered set <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X Subscript ring\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>X</mml:mi>\n <mml:mo>∘<!-- ∘ --></mml:mo>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">X_\\circ</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, any subgroup <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G less-than-or-equal-to normal upper A u t left-parenthesis upper X Subscript ring Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>G</mml:mi>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">A</mml:mi>\n </mml:mrow>\n <mml:mi>u</mml:mi>\n <mml:mi>t</mml:mi>\n </mml:mrow>\n <mml:mspace width=\"thinmathspace\" />\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>X</mml:mi>\n <mml:mo>∘<!-- ∘ --></mml:mo>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">G \\leq {\\mathrm {A}ut}\\,(X_\\circ )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> whose action on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X Subscript ring\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>X</mml:mi>\n <mml:mo>∘<!-- ∘ --></mml:mo>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">X_\\circ</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is ultrahomogeneous, when equipped with the topology <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau Subscript p\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>τ<!-- τ --></mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\tau _p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of pointwise convergence, is intrinsically circularly ordered. This result is a “circular” analog of Pestov’s result about the extreme amenability of ultrahomogeneous actions on linearly ordered sets by linear order preserving transformations. We also describe, for such groups <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, the dynamics of the system <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M left-parenthesis upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>M</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">M(G)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, show that it is extremely proximal (whence <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M left-parenthesis upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>M</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">M(G)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> coincides with the universal strongly proximal <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-system), and deduce that the group <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> must contain a non-abelian free group.</p>\n\n<p>In the case where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is countable, the corresponding Polish group of circular automorphisms <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G equals normal upper A u t left-parenthesis upper X Subscript o Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>G</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">A</mml:mi>\n </mml:mrow>\n <mml:mi>u</mml:mi>\n <mml:mi>t</mml:mi>\n </mml:mrow>\n <mml:mspace width=\"thinmathspace\" />\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>X</mml:mi>\n <mml:mi>o</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">G={\\mathrm {A}ut}\\,(X_o)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> admits a concrete description. Using the Kechris–Pestov–Todorcevic construction we show that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M left-parenthesis upper G right-parenthesis equals normal upper S normal p normal l normal i normal t left-parenthesis double-struck upper T semicolon double-struck upper Q Subscript ring Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>M</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n ","PeriodicalId":296603,"journal":{"name":"Topology, Geometry, and Dynamics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology, Geometry, and Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/772/15486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We study topological groups G G for which either the universal minimal G G -system M ( G ) M(G) or the universal irreducible affine G G -system I A ( G ) I\!A(G) is tame. We call such groups “intrinsically tame” and “convexly intrinsically tame”, respectively. These notions, which were introduced in [Ergodic theory and dynamical systems in their interactions with arithmetics and combinatorics, Springer, Cham, 2018, pp. 351–392], are generalized versions of extreme amenability and amenability, respectively. When M ( G ) M(G) , as a G G -system, admits a circular order we say that G G is intrinsically circularly ordered. This implies that G G is intrinsically tame.

We show that given a circularly ordered set X X_\circ , any subgroup G A u t ( X ) G \leq {\mathrm {A}ut}\,(X_\circ ) whose action on X X_\circ is ultrahomogeneous, when equipped with the topology τ p \tau _p of pointwise convergence, is intrinsically circularly ordered. This result is a “circular” analog of Pestov’s result about the extreme amenability of ultrahomogeneous actions on linearly ordered sets by linear order preserving transformations. We also describe, for such groups G G , the dynamics of the system M ( G ) M(G) , show that it is extremely proximal (whence M ( G ) M(G) coincides with the universal strongly proximal G G -system), and deduce that the group G G must contain a non-abelian free group.

In the case where X X is countable, the corresponding Polish group of circular automorphisms G = A u t ( X o ) G={\mathrm {A}ut}\,(X_o) admits a concrete description. Using the Kechris–Pestov–Todorcevic construction we show that M ( G

圆序、超齐次序结构及其自同构群
研究了泛极小G G -系统M(G) M(G)或泛不可约仿射G G -系统I A(G) I\!A(G)是驯服的拓扑群G G。我们分别称这样的群体为“本质上温顺”和“固有地温顺”。在[遍历理论和动力系统与算术和组合学的相互作用,Springer, Cham, 2018, pp. 351-392]中介绍的这些概念分别是极端易受性和易受性的广义版本。当M(G) M(G)作为一个G -系统,承认循环序时,我们说G本质上是循环序的。这意味着G在本质上是温顺的。我们证明了给定一个圆序集合X°X_ \circ,任何子群G≤a ut (X°)G \leq{\mathrm Aut{\,}(X_ }\circ)对X°X_ \circ的作用是超齐次的,当具有点向收敛的拓扑τ p \tau _p时,本质上是圆有序的。这个结果是Pestov用线性保序变换关于超齐次作用在线性有序集合上的极端可适应性的一个“循环”模拟。对于这样的群G G,我们还描述了系统M(G) M(G)的动力学,证明了它是极近的(因此M(G) M(G)与普遍的强近G -系统重合),并推导出群G G必须包含一个非阿贝尔自由群。在X X可数的情况下,相应的圆自同构的波兰群G= Aut (X o) G= {\mathrm Aut{\},(}X_o)允许一个具体的描述。利用Kechris-Pestov-Todorcevic结构,我们证明M (G
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信