{"title":"Circular orders, ultra-homogeneous order structures, and their automorphism groups","authors":"E. Glasner, M. Megrelishvili","doi":"10.1090/conm/772/15486","DOIUrl":null,"url":null,"abstract":"<p>We study topological groups <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for which either the universal minimal <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-system <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M left-parenthesis upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>M</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">M(G)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> or the universal irreducible affine <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-system <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I upper A left-parenthesis upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>I</mml:mi>\n <mml:mspace width=\"negativethinmathspace\" />\n <mml:mi>A</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">I\\!A(G)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is tame. We call such groups “intrinsically tame” and “convexly intrinsically tame”, respectively. These notions, which were introduced in [<italic>Ergodic theory and dynamical systems in their interactions with arithmetics and combinatorics</italic>, Springer, Cham, 2018, pp. 351–392], are generalized versions of extreme amenability and amenability, respectively. When <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M left-parenthesis upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>M</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">M(G)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, as a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-system, admits a circular order we say that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is intrinsically circularly ordered. This implies that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is intrinsically tame.</p>\n\n<p>We show that given a circularly ordered set <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X Subscript ring\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>X</mml:mi>\n <mml:mo>∘<!-- ∘ --></mml:mo>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">X_\\circ</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, any subgroup <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G less-than-or-equal-to normal upper A u t left-parenthesis upper X Subscript ring Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>G</mml:mi>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">A</mml:mi>\n </mml:mrow>\n <mml:mi>u</mml:mi>\n <mml:mi>t</mml:mi>\n </mml:mrow>\n <mml:mspace width=\"thinmathspace\" />\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>X</mml:mi>\n <mml:mo>∘<!-- ∘ --></mml:mo>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">G \\leq {\\mathrm {A}ut}\\,(X_\\circ )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> whose action on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X Subscript ring\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>X</mml:mi>\n <mml:mo>∘<!-- ∘ --></mml:mo>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">X_\\circ</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is ultrahomogeneous, when equipped with the topology <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau Subscript p\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>τ<!-- τ --></mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\tau _p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of pointwise convergence, is intrinsically circularly ordered. This result is a “circular” analog of Pestov’s result about the extreme amenability of ultrahomogeneous actions on linearly ordered sets by linear order preserving transformations. We also describe, for such groups <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, the dynamics of the system <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M left-parenthesis upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>M</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">M(G)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, show that it is extremely proximal (whence <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M left-parenthesis upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>M</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">M(G)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> coincides with the universal strongly proximal <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-system), and deduce that the group <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> must contain a non-abelian free group.</p>\n\n<p>In the case where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is countable, the corresponding Polish group of circular automorphisms <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G equals normal upper A u t left-parenthesis upper X Subscript o Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>G</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">A</mml:mi>\n </mml:mrow>\n <mml:mi>u</mml:mi>\n <mml:mi>t</mml:mi>\n </mml:mrow>\n <mml:mspace width=\"thinmathspace\" />\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>X</mml:mi>\n <mml:mi>o</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">G={\\mathrm {A}ut}\\,(X_o)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> admits a concrete description. Using the Kechris–Pestov–Todorcevic construction we show that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M left-parenthesis upper G right-parenthesis equals normal upper S normal p normal l normal i normal t left-parenthesis double-struck upper T semicolon double-struck upper Q Subscript ring Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>M</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n ","PeriodicalId":296603,"journal":{"name":"Topology, Geometry, and Dynamics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology, Geometry, and Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/772/15486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We study topological groups GG for which either the universal minimal GG-system M(G)M(G) or the universal irreducible affine GG-system IA(G)I\!A(G) is tame. We call such groups “intrinsically tame” and “convexly intrinsically tame”, respectively. These notions, which were introduced in [Ergodic theory and dynamical systems in their interactions with arithmetics and combinatorics, Springer, Cham, 2018, pp. 351–392], are generalized versions of extreme amenability and amenability, respectively. When M(G)M(G), as a GG-system, admits a circular order we say that GG is intrinsically circularly ordered. This implies that GG is intrinsically tame.
We show that given a circularly ordered set X∘X_\circ, any subgroup G≤Aut(X∘)G \leq {\mathrm {A}ut}\,(X_\circ ) whose action on X∘X_\circ is ultrahomogeneous, when equipped with the topology τp\tau _p of pointwise convergence, is intrinsically circularly ordered. This result is a “circular” analog of Pestov’s result about the extreme amenability of ultrahomogeneous actions on linearly ordered sets by linear order preserving transformations. We also describe, for such groups GG, the dynamics of the system M(G)M(G), show that it is extremely proximal (whence M(G)M(G) coincides with the universal strongly proximal GG-system), and deduce that the group GG must contain a non-abelian free group.
In the case where XX is countable, the corresponding Polish group of circular automorphisms G=Aut(Xo)G={\mathrm {A}ut}\,(X_o) admits a concrete description. Using the Kechris–Pestov–Todorcevic construction we show that M(G