Coordination Chemistry Reviews最新文献

筛选
英文 中文
A comprehensive Review based on the synthesis, properties, morphology, functionalization, and potential applications of transition metals nitrides
IF 20.6 1区 化学
Coordination Chemistry Reviews Pub Date : 2024-12-11 DOI: 10.1016/j.ccr.2024.216353
Hamid Ali, Yasin Orooji, Zeeshan Ajmal, Mohamed Abboud, Ahmed M. Abu-Dief, Khulood A. Abu Al-Ola, Hassan M.A. Hassan, Dewu Yue, Sheng-Rong Guo, Asif Hayat
{"title":"A comprehensive Review based on the synthesis, properties, morphology, functionalization, and potential applications of transition metals nitrides","authors":"Hamid Ali, Yasin Orooji, Zeeshan Ajmal, Mohamed Abboud, Ahmed M. Abu-Dief, Khulood A. Abu Al-Ola, Hassan M.A. Hassan, Dewu Yue, Sheng-Rong Guo, Asif Hayat","doi":"10.1016/j.ccr.2024.216353","DOIUrl":"https://doi.org/10.1016/j.ccr.2024.216353","url":null,"abstract":"Transition metal nitrides (TMNs) are emerging as versatile materials with significant potential across various fields due to their unique properties and functionalities. This review provides a comprehensive overview of TMNs, covering their crystal structure, stability, and the unique advantages they offer. TMNs exhibit superior catalytic activity, lower sintering sensitivity, and high selectivity, while operating at reduced temperatures. Density functional theory (DFT) studies have addressed their diverse properties, including electronic, optical, vibrational, plasmonic, mechanical, bulk, magnetic, structural, and morphological characteristics. The review categorizes TMNs into different types: unitary, binary, ternary, and quaternary nitrides, and explores various synthesis methods such as ammonolysis, chemical vapor deposition (CVD), electrodeposition, and pyrolysis. Additionally, it discusses the classification of TMNs into single metal-source nitrides and composite metal-source nitrides, highlighting materials like Fe<img alt=\"single bond\" src=\"https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/55/entities/sbnd.gif\" style=\"vertical-align:middle\"/>N, Co<img alt=\"single bond\" src=\"https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/55/entities/sbnd.gif\" style=\"vertical-align:middle\"/>N, and Ti<img alt=\"single bond\" src=\"https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/55/entities/sbnd.gif\" style=\"vertical-align:middle\"/>N. Similarly, the functionalization strategies are also examined, covering boron-based, cyanide-based, and graphene-based TMNs etc. among others. The review evaluates the morphology of TMNs, including nanoflowers, nanospheres, and nanowires, and their influence on performance. Finally, the applications of TMNs are explored in detail, focusing on their performance in photocatalytic reactions (hydrogen (H<sub>2</sub>) evolution, oxygen (O<sub>2</sub>) evolution, overall water splitting, hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) production, carbon dioxide (CO<sub>2</sub>) reduction, and degradation), electrocatalysis (H<sub>2</sub> evolution reaction, O<sub>2</sub> evolution reaction, overall water splitting, CO<sub>2</sub> reduction), energy storage (batteries and supercapacitors), and solar cells. This synthesis of material highlights the extensive use and future promise of TMNs in enhancing technical advancements. This study aims to provide an extensive foundation that covers every aspect of TMNs, with a particular focus on their many functional features, unique morphologies, and dimensions. Our comprehensive approach provides readers with an in-depth understanding of TMNs properties and potential applications, setting our review apart through its extensive coverage and detailed analysis. This thorough overview highlights the enormous potential of TMNs to drive advancements in various technological and scientific fields.<h3>Novelty of this study</h3>The novel","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"26 1","pages":""},"PeriodicalIF":20.6,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142809817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing frontiers in CO2 capture: The renaissance of biomass-derived carbon materials
IF 20.6 1区 化学
Coordination Chemistry Reviews Pub Date : 2024-12-11 DOI: 10.1016/j.ccr.2024.216380
Mustapha Umar, Basiru O. Yusuf, Mansur Aliyu, Ijaz Hussain, Aliyu M. Alhassan, Mohammed Mosaad Awad, Omer A. Taialla, Babar Ali, Khalid R. Alhooshani, Saheed A. Ganiyu
{"title":"Advancing frontiers in CO2 capture: The renaissance of biomass-derived carbon materials","authors":"Mustapha Umar, Basiru O. Yusuf, Mansur Aliyu, Ijaz Hussain, Aliyu M. Alhassan, Mohammed Mosaad Awad, Omer A. Taialla, Babar Ali, Khalid R. Alhooshani, Saheed A. Ganiyu","doi":"10.1016/j.ccr.2024.216380","DOIUrl":"https://doi.org/10.1016/j.ccr.2024.216380","url":null,"abstract":"As the urgency to mitigate climate change intensifies, innovative solutions for CO<sub>2</sub> capture have become paramount. This review highlights the revolutionary impact of biomass-derived carbon materials in the field of CO<sub>2</sub> capture. These materials, sourced from agricultural residues, forestry waste, and other organic matter, offer a sustainable, cost-effective, and highly efficient alternative to conventional capture technologies. Key findings of this review highlight the superior CO<sub>2</sub> adsorption capabilities of biomass-derived carbon materials, stemming from their large surface area and tunable pore structures. The review reveals that these materials outperform traditional sorbents like zeolites, metal-organic frameworks (MOFs), and amines in both efficiency and environmental impact. The life cycle assessments (LCAs) discussed demonstrate significant reductions in greenhouse gas emissions and energy demands when using biomass-derived carbons compared to coal-based systems. For instance, biochar-derived activated carbon exhibits 35% lower cradle-to-product gate energy demand and produces less than half the greenhouse gas emissions of coal-derived activated carbon. Moreover, the review underscores the versatility of synthesis methods such as pyrolysis and hydrothermal carbonization, which can be precisely adjusted to improve the effectiveness of these materials. Innovations like surface modifications and heteroatom doping are further pushing the boundaries of what biomass-derived carbons can achieve in CO<sub>2</sub> capture applications. By exploring a wide range of case studies and industrial-scale applications, this review not only illustrates the practical benefits of these materials but also sets the stage for future advancements. These findings suggest a promising path forward for scalable, efficient, and sustainable CO<sub>2</sub> capture technologies, marking a significant step toward a greener and more resilient future.","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"4 1","pages":""},"PeriodicalIF":20.6,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142804712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metal-organic frameworks (MOFs) for phototherapy and synergistic phototherapy of cancer
IF 20.6 1区 化学
Coordination Chemistry Reviews Pub Date : 2024-12-10 DOI: 10.1016/j.ccr.2024.216381
Pei-Hong Tong, Jing-Jie Yang, Yu-Fan Zhou, Yi-Fan Tang, Meng-Tian Tang, Yi Zang, Yu-Fei Pan, Li-Wei Dong, Ye-Xiong Tan, Ki Taek Nam, Xi-Le Hu, He Huang, Jia Li, Hong-Yang Wang, Tony D. James, Juyoung Yoon, Xiao-Peng He
{"title":"Metal-organic frameworks (MOFs) for phototherapy and synergistic phototherapy of cancer","authors":"Pei-Hong Tong, Jing-Jie Yang, Yu-Fan Zhou, Yi-Fan Tang, Meng-Tian Tang, Yi Zang, Yu-Fei Pan, Li-Wei Dong, Ye-Xiong Tan, Ki Taek Nam, Xi-Le Hu, He Huang, Jia Li, Hong-Yang Wang, Tony D. James, Juyoung Yoon, Xiao-Peng He","doi":"10.1016/j.ccr.2024.216381","DOIUrl":"https://doi.org/10.1016/j.ccr.2024.216381","url":null,"abstract":"Phototherapy is a form of light-mediated therapy, which includes photodynamic therapy (PDT) photothermal therapy (PTT), and the recently emerging photoimmunotherapy (PIT). PTT, PDT, PIT and their combinations with conventional chemotherapeutics have been used extensively to treat cancer due to their outstanding therapeutic efficacy, are non-invasive, mitigate side effects, and display spatial selectivity for a target organ. In addition to the many anticancer phototherapeutic agents developed, metal-organic frameworks (MOFs) are a new generation of promising light-responsive materials owing to their readily tunable chemical structures through simple coordination chemistry as well as their morphological diversity. When properly designed, MOFs can also serve as photodynamic and/or photothermal agents themselves whilst being a carrier to deliver chemo- and macromolecular therapeutic agents owing to their highly tunable porosity. This review highlights recent research progresses made in the development of MOFs-based materials for phototherapy and synergistic phototherapy, as well as discussing any remaining challenges.","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"28 1","pages":""},"PeriodicalIF":20.6,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142797276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Raman spectroscopic technologies for chiral discrimination: Current status and new frontiers
IF 20.6 1区 化学
Coordination Chemistry Reviews Pub Date : 2024-12-10 DOI: 10.1016/j.ccr.2024.216375
Yu Tian, Ge Fang, Fengxia Wu, Juliana Gaithan Kauno, Haili Wei, Hsien-Yi Hsu, Fenghua Li, Guobao Xu, Wenxin Niu
{"title":"Raman spectroscopic technologies for chiral discrimination: Current status and new frontiers","authors":"Yu Tian, Ge Fang, Fengxia Wu, Juliana Gaithan Kauno, Haili Wei, Hsien-Yi Hsu, Fenghua Li, Guobao Xu, Wenxin Niu","doi":"10.1016/j.ccr.2024.216375","DOIUrl":"https://doi.org/10.1016/j.ccr.2024.216375","url":null,"abstract":"Chiral discrimination is crucial in drug safety, catalysis, materials science, and environmental sustainability, as enantiomers often exhibit distinct biological, chemical, and physical properties. Raman spectroscopic technologies have established efficient strategies for discriminating enantiomers through manipulating the Raman excitation and scattering light, as well as constructing chiral molecular recognition systems and chiral surface-enhanced Raman spectroscopy (SERS) substrates, which offer the advantages of non-destructive, label-free, and real-time analysis. This review systematically summarizes the principles and recent advances in Raman spectroscopic technologies for discriminating enantiomers. We begin by introducing the fundamental mechanisms and experimental progress of Raman optical activity (ROA), highlighting its importance in enantiomeric discrimination. Moving beyond the complex instruments used in ROA-based methods, we discuss critical breakthroughs in enantiomeric discrimination by combining plasmonic structures with conventional Raman spectrometers. The emerging strategies to discriminate enantiomers by both achiral and chiral plasmonic structures are summarized, with particular emphasis on the underlying mechanisms of chiral plasmonic structures in enantioselective SERS. Finally, we present the major challenges and future opportunities in this evolving field, providing insights into the future development directions.","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"21 1","pages":""},"PeriodicalIF":20.6,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142797731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From construction strategies to applications: Multifunctional defective metal-organic frameworks
IF 20.6 1区 化学
Coordination Chemistry Reviews Pub Date : 2024-12-09 DOI: 10.1016/j.ccr.2024.216356
Xiaoyu Qiu, Rui Wang
{"title":"From construction strategies to applications: Multifunctional defective metal-organic frameworks","authors":"Xiaoyu Qiu, Rui Wang","doi":"10.1016/j.ccr.2024.216356","DOIUrl":"https://doi.org/10.1016/j.ccr.2024.216356","url":null,"abstract":"The creation of defects in metal-organic frameworks (MOFs), known as defect engineering, offers an additional way for MOFs to personalize their specific functions and applications. Defect engineering not only provides new opportunities for MOFs in the fields of adsorption and catalysis, but also opens up a new avenue in terms of physical properties such as mechanical response and conductance. In this review, we focus on two classes of synthetic strategies (de novo synthesis and post-synthetic modification) for defective MOFs and their applications in the fundamental field, the effects of defect engineering on MOFs performance are as well discussed in detail. In the end, we highlight the challenges and future developments that can be expected about defective MOFs. Overall, this review can be applied as a potent tool for revealing the structure–activity relationships and accelerating the on-demand design of defective MOFs. We also hope this review will provide powerful assistance to researchers in utilizing defect engineering for switching new avenues for MOFs, enabling the better design and synthesis of new materials with specific functionalities.","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"234 1","pages":""},"PeriodicalIF":20.6,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142797730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
UiO-67: A versatile metal-organic framework for diverse applications
IF 20.6 1区 化学
Coordination Chemistry Reviews Pub Date : 2024-12-06 DOI: 10.1016/j.ccr.2024.216354
Ji Zhou, Shuangxi Gu, Yuqin Xiang, Yun Xiong, Genyan Liu
{"title":"UiO-67: A versatile metal-organic framework for diverse applications","authors":"Ji Zhou, Shuangxi Gu, Yuqin Xiang, Yun Xiong, Genyan Liu","doi":"10.1016/j.ccr.2024.216354","DOIUrl":"https://doi.org/10.1016/j.ccr.2024.216354","url":null,"abstract":"UiO-67 species, a prominent class of metal-organic frameworks (MOFs) within the UiO (University of Oslo) subgroup, possess unique features. These include diverse synthetic methods, a wide variety of structures, host-guest chemistry, large and uniform pores, tunable surfaces, and flexible network topology, geometry, dimension, and chemical functionality. Due to these features, UiO-67 demonstrates remarkable potential applications in various scientific and life science fields. Literature surveys show that UiO-67 exhibits competitive and promising applications compared to other MOFs and even its close relatives, UiO-66 and UiO-68. Despite the rich chemistry and rapidly growing research on UiO-67, particularly in recent years, a comprehensive review of its applications is lacking. This review aims to fill this gap by providing the first systematic and complete classification of Zr-based UiO-67 MOF applications, synthetic methods, design and structures since 2008. The contents are categorized into key areas: design and synthesize, structural landscape, applications including, catalysis, adsorption, separation, sensing, medicine/drug delivery, and energy storage/conversion. Each category is further subdivided for specific applications. While the primary focus is on applications, the review also incorporates discussions on synthetic pathways and comparative studies. Finally, future perspectives for Zr-UiO-67 applications are explored, aiming to contribute to their wider use in multidisciplinary chemistry. Future research should focus on expanding the application of Zr-UiO-67 MOFs in diverse fields. This includes further exploration of their potential in CO<sub>2</sub> capture and conversion, organic transformations, and C<img alt=\"single bond\" src=\"https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/55/entities/sbnd.gif\" style=\"vertical-align:middle\"/>C bond formation catalysis. Additionally, the development of UiO-67-based materials for water treatment, environmental remediation, biosensing, drug delivery, and energy storage will be crucial.","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"79 1","pages":""},"PeriodicalIF":20.6,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142782980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cation engineering modified InP quantum dots for enhanced properties and diversified applications
IF 20.6 1区 化学
Coordination Chemistry Reviews Pub Date : 2024-12-06 DOI: 10.1016/j.ccr.2024.216376
Rui Jiang, Jie Zhao, Maoyuan Huang, Zhongjie Cui, Shiliang Mei, Wanlu Zhang, Ruiqian Guo
{"title":"Cation engineering modified InP quantum dots for enhanced properties and diversified applications","authors":"Rui Jiang, Jie Zhao, Maoyuan Huang, Zhongjie Cui, Shiliang Mei, Wanlu Zhang, Ruiqian Guo","doi":"10.1016/j.ccr.2024.216376","DOIUrl":"https://doi.org/10.1016/j.ccr.2024.216376","url":null,"abstract":"InP quantum dots (QDs), owing to their non-toxicity, exceptional optoelectronic properties, and great potential as a substitute for Cd/Pb-based QDs, have garnered significant attention. As a straightforward yet effective strategy for modulating the performance of InP QDs, cation doping has lately emerged as a predominant approach. In this review, the mechanisms and performance tuning achieved through cation doping are delved into, covering aspects of growth kinetics, interface modification, and carrier modulation. A comprehensive analysis and summary of recent advances from preparation to applications including light emitting diodes (LEDs), catalysis, and bioimaging in various cation doping systems are presented. Finally, some perspectives and possible directions for the future development of cation-doped InP QDs are discussed. This review offers a thorough insight into performance enhancements achieved through cation doping in InP QDs, intending to facilitate the design and advance the application of next-generation, high-quality InP QDs technologies.","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"19 1","pages":""},"PeriodicalIF":20.6,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142782975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zirconium–based MXenes: Synthesis, properties, applications, and prospects
IF 20.6 1区 化学
Coordination Chemistry Reviews Pub Date : 2024-12-06 DOI: 10.1016/j.ccr.2024.216355
George Elsa, Abdul Hanan, Rashmi Walvekar, Arshid Numan, Mohammad Khalid
{"title":"Zirconium–based MXenes: Synthesis, properties, applications, and prospects","authors":"George Elsa, Abdul Hanan, Rashmi Walvekar, Arshid Numan, Mohammad Khalid","doi":"10.1016/j.ccr.2024.216355","DOIUrl":"https://doi.org/10.1016/j.ccr.2024.216355","url":null,"abstract":"Zirconium (Zr) based MXenes are a new type of two–dimensional (2D) transition metal carbides and carbonitrides that have attracted significant research interest in recent years. These materials exhibit a unique combination of physicochemical properties, making them attractive for a wide range of applications. Despite this growing attention, a systematic review of their synthesis methods, material properties, and applications is still lacking. This review provides a comprehensive overview of the state of research on Zr–MXenes, covering various aspects from synthesis to applications. The discussion includes an in–depth analysis of the different wet–chemical etching protocols used to obtain Zr–MXenes from Zr–containing MAX phases and the impact of these methods on the morphology of materials. Detailed characterization techniques have revealed important properties of Zr–MXenes, such as hydrophilicity, electrical conductivity, and ion storage capability. Further, this review examines the potential applications of Zr–MXenes in various fields, including energy storage, electromagnetic interference shielding, corrosion prevention, and biomedical applications. While, Zr–MXenes offer promising prospects, challenges related to large–scale production and property optimization must be addressed to facilitate their widespread adoption. By providing a comprehensive overview of Zr–MXene synthesis, properties, and applications, this review aims to inspire and guide future research and development efforts toward the rational design and utilization of these promising 2D nanomaterials.","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"4 1","pages":""},"PeriodicalIF":20.6,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142782981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Are MOFs ready for environmental applications: Assessing stability against natural stressors?
IF 20.6 1区 化学
Coordination Chemistry Reviews Pub Date : 2024-12-06 DOI: 10.1016/j.ccr.2024.216361
Lina He, Ziqi Wang, Hong Wang, Yi-nan Wu
{"title":"Are MOFs ready for environmental applications: Assessing stability against natural stressors?","authors":"Lina He, Ziqi Wang, Hong Wang, Yi-nan Wu","doi":"10.1016/j.ccr.2024.216361","DOIUrl":"https://doi.org/10.1016/j.ccr.2024.216361","url":null,"abstract":"Metal-organic frameworks (MOFs), as emerging porous crystalline materials comprising metal ions/clusters and organic linkers, display significant potential for applications in adsorption, separation, catalysis, and other environmental domains, owing to their intrinsic structural diversity. However, the stability of MOFs under various environmental conditions remains a critical challenge, potentially hindering their broader practical adoption. Hence, a thorough understanding of the effects of environmental factors on MOF stability is imperative. This review explores the impact of essential environmental parameters—including liquid water/moisture, acids/bases, coordinating anions, solar irradiation, bacteria, oxidation-reduction potential, natural organic matter, and minerals—on the structural integrity of MOFs. The underlying mechanisms by which these factors affect MOF stability are elucidated, and MOFs are classified according to their resilience or susceptibility under specific environmental conditions. Furthermore, illustrative case studies of both robust and vulnerable MOFs are discussed to highlight the principles guiding the selection of MOFs for diverse practical applications. The challenges and future direction in this field are also proposed. Overall, this review aims to serve as a critical resource, facilitating the effective transition of MOFs from laboratory settings to real implementations, thereby enhancing their practical utility and effectiveness in addressing challenges of environmental pollution control and energy-related issues.","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"8 1","pages":""},"PeriodicalIF":20.6,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142782979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A critical review on modification strategies of Bi2Sn2O7 photocatalysts and their applications in energy and environmental remediation fields
IF 20.6 1区 化学
Coordination Chemistry Reviews Pub Date : 2024-12-06 DOI: 10.1016/j.ccr.2024.216377
Xiao-Ju Wen, Xuan Wu, Lin Hu, Xian-Kun Wu, Hai Guo, Bin-Bin Qian, Zong-Tang Liu, Hao-Zhe Li, Zheng-Hao Fei
{"title":"A critical review on modification strategies of Bi2Sn2O7 photocatalysts and their applications in energy and environmental remediation fields","authors":"Xiao-Ju Wen, Xuan Wu, Lin Hu, Xian-Kun Wu, Hai Guo, Bin-Bin Qian, Zong-Tang Liu, Hao-Zhe Li, Zheng-Hao Fei","doi":"10.1016/j.ccr.2024.216377","DOIUrl":"https://doi.org/10.1016/j.ccr.2024.216377","url":null,"abstract":"Bi<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub> has garnered widespread research interest in recent years due to its cost-effectiveness, suitable band structure, and environmental friendliness. However, the photocatalytic performance of pristine Bi<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub> materials is insufficient to meet the diverse practical application demands. To solve this shortcoming, researchers have actively explored and implemented various strategies to significantly enhance the photocatalytic activity of Bi<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub>. Nonetheless, a comprehensive review compiled the progress in Bi<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub>-based photocatalysts for energy and environmental applications remains scarce. Herein, this review firstly summarized the latest modification strategies and methods for enhancing the photocatalytic performance of Bi<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub>. Subsequently, the photocatalytic applications of the Bi<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub>-based photocatalysts are also classified and discussed according to in elimination of aqueous pollutants, nitric oxide elimination, nitrogen fixation, hydrogen evolution and CO<sub>2</sub> reduction. Ultimately, the primary challenges confronted by Bi<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub> photocatalysts and emerging development opportunities are centered upon in the article.","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"79 1","pages":""},"PeriodicalIF":20.6,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142783143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信