{"title":"Quantum noise in energy-efficient slow light structures for optical computing: sqeezed light from slow light","authors":"R. Hamerly, K. Jamshidi, H. Mabuchi","doi":"10.1117/12.2227308","DOIUrl":"https://doi.org/10.1117/12.2227308","url":null,"abstract":"Due to their strong light confinement, waveguides with optical nonlinearities may be a promising platform for energy-efficient optical computing. Slow light can enhance a waveguide’s effective nonlinearity, which could result in devices that operate in low-power regimes where quantum fluctuations are important, and may also have quantum applications including squeezing and entanglement generation. In this manuscript, slow-light structures based on the Kerr (χ(3)) nonlinearity are analyzed using a semi-classical model to account for the quantum noise. We develop a hybrid split-step / Runge-Kutta numerical model to compute the mean field and squeezing spectrum for pulses propagating down a waveguide, and use this model to study squeezing produced in optical waveguides. Scaling relations are explored, and the benefits and limitations of slow light are discussed in the context of squeezing.","PeriodicalId":285152,"journal":{"name":"SPIE Photonics Europe","volume":"141 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116785746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Verschaffelt, S. Roelandt, Y. Meuret, Wendy Van den Broeck, K. Kilpi, B. Lievens, An Jacobs, P. Janssens, H. Thienpont
{"title":"Speckle perception and disturbance limit in laser based projectors","authors":"G. Verschaffelt, S. Roelandt, Y. Meuret, Wendy Van den Broeck, K. Kilpi, B. Lievens, An Jacobs, P. Janssens, H. Thienpont","doi":"10.1117/12.2227535","DOIUrl":"https://doi.org/10.1117/12.2227535","url":null,"abstract":"We investigate the level of speckle that can be tolerated in a laser cinema projector. For this purpose, we equipped a movie theatre room with a prototype laser projector. A group of 186 participants was gathered to evaluate the speckle perception of several, short movie trailers in a subjective ‘Quality of Experience’ experiment. This study is important as the introduction of lasers in projection systems has been hampered by the presence of speckle in projected images. We identify a speckle disturbance threshold by statistically analyzing the observers’ responses for different values of the amount of speckle, which was monitored using a well-defined speckle measurement method. The analysis shows that the speckle perception of a human observer is not only dependent on the objectively measured amount of speckle, but it is also strongly influenced by the image content. As is also discussed in [Verschaffelt et al., Scientific Reports 5, art. nr. 14105, 2015] we find that, for moving images, the speckle becomes disturbing if the speckle contrast becomes larger than 6.9% for the red, 6.0% for the green, and 4.8% for the blue primary colors of the projector, whereas for still images the speckle detection threshold is about 3%. As we could not independently tune the speckle contrast of each of the primary colors, this speckle disturbance limit seems to be determined by the 6.9% speckle contrast of the red color as this primary color contains the largest amount of speckle. The speckle disturbance limit for movies thus turns out to be substantially larger than that for still images, and hence is easier to attain.","PeriodicalId":285152,"journal":{"name":"SPIE Photonics Europe","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132873897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. M. Fakhir, W. L. Woo, Jonathon A. Chambers, S. Dlay
{"title":"Perspective projection for variance pose face recognition from camera calibration","authors":"M. M. Fakhir, W. L. Woo, Jonathon A. Chambers, S. Dlay","doi":"10.1117/12.2231350","DOIUrl":"https://doi.org/10.1117/12.2231350","url":null,"abstract":"Variance pose is an important research topic in face recognition. The alteration of distance parameters across variance pose face features is a challenging. We provide a solution for this problem using perspective projection for variance pose face recognition. Our method infers intrinsic camera parameters of the image which enable the projection of the image plane into 3D. After this, face box tracking and centre of eyes detection can be identified using our novel technique to verify the virtual face feature measurements. The coordinate system of the perspective projection for face tracking allows the holistic dimensions for the face to be fixed in different orientations. The training of frontal images and the rest of the poses on FERET database determine the distance from the centre of eyes to the corner of box face. The recognition system compares the gallery of images against different poses. The system initially utilises information on position of both eyes then focuses principally on closest eye in order to gather data with greater reliability. Differentiation between the distances and position of the right and left eyes is a unique feature of our work with our algorithm outperforming other state of the art algorithms thus enabling stable measurement in variance pose for each individual.","PeriodicalId":285152,"journal":{"name":"SPIE Photonics Europe","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128112156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Agbana, Huizhen Yang, O. Soloviev, G. Vdovin, M. Verhaegen
{"title":"Sensorless adaptive optics system based on image second moment measurements","authors":"T. Agbana, Huizhen Yang, O. Soloviev, G. Vdovin, M. Verhaegen","doi":"10.1117/12.2227551","DOIUrl":"https://doi.org/10.1117/12.2227551","url":null,"abstract":"This paper presents experimental results of a static aberration control algorithm based on the linear relation be- tween mean square of the aberration gradient and the second moment of point spread function for the generation of control signal input for a deformable mirror (DM). Results presented in the work of Yang et al.1 suggested a good feasibility of the method for correction of static aberration for point and extended sources. However, a practical realisation of the algorithm has not been demonstrated. The goal of this article is to check the method experimentally in the real conditions of the present noise, finite dynamic range of the imaging camera, and system misalignments. The experiments have shown strong dependence of the linearity of the relationship on image noise and overall image intensity, which depends on the aberration level. Also, the restoration capability and the rate of convergence of the AO system for aberrations generated by the deformable mirror are experi- mentally investigated. The presented approach as well as the experimental results finds practical application in compensation of static aberration in adaptive microscopic imaging system.","PeriodicalId":285152,"journal":{"name":"SPIE Photonics Europe","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132918230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-speed digital color fringe projection technique for three-dimensional facial measurements","authors":"Cheng-Yang Liu, Li-Jen Chang, Chung-Yi Wang","doi":"10.1117/12.2220774","DOIUrl":"https://doi.org/10.1117/12.2220774","url":null,"abstract":"Digital fringe projection techniques have been widely studied in industrial applications because of the advantages of high accuracy, fast acquisition and non-contact operation. In this study, a single-shot high-speed digital color fringe projection technique is proposed to measure three-dimensional (3-D) facial features. The light source used in the measurement system is structured light with color fringe patterns. A projector with digital light processing is used as light source to project color structured light onto face. The distorted fringe pattern image is captured by the 3-CCD color camera and encoded into red, green and blue channels. The phase-shifting algorithm and quality guided path unwrapping algorithm are used to calculate absolute phase map. The detecting angle of the color camera is adjusted by using a motorized stage. Finally, a complete 3-D facial feature is obtained by our technique. We have successfully achieved simultaneous 3-D phase acquisition, reconstruction and exhibition at a speed of 0.5 s. The experimental results may provide a novel, high accuracy and real-time 3-D shape measurement for facial recognition system.","PeriodicalId":285152,"journal":{"name":"SPIE Photonics Europe","volume":"168 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123949990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Vargas-Quintero, B. Escalante-Ramírez, Lisbeth Camargo Marín, M. G. Guzmán Huerta, F. Arámbula Cosío, Héctor Borboa
{"title":"Shape extraction in fetal ultrasound images using a Hermite-based filtering approach and a point distribution model","authors":"L. Vargas-Quintero, B. Escalante-Ramírez, Lisbeth Camargo Marín, M. G. Guzmán Huerta, F. Arámbula Cosío, Héctor Borboa","doi":"10.1117/12.2227950","DOIUrl":"https://doi.org/10.1117/12.2227950","url":null,"abstract":"In this work we present a segmentation framework applied to fetal cardiac images. One of the main problems of the segmentation in ultrasound images is the speckle pattern that makes difficult to model images features such as edges and homogeneous regions. Our approach is based on two main processes. The first one aims at enhancing the ultrasound image using a noise reduction scheme. The Hermite transform is used for this purpose. In the second process a Point Distribution Model (PDM), previously trained, is used for the segmentation of the desired object. The filtering process is then employed before the segmentation stage with the aim of improving the results. The obtained result in the filtering process is used as a way to make more robust the segmentation stage. We evaluate the proposed method in the segmentation of the left ventricle of fetal ultrasound data. Different metrics are used to validate and compare the performance with other methods applied to fetal echocardiographic images.","PeriodicalId":285152,"journal":{"name":"SPIE Photonics Europe","volume":"106 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128961114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-diffracting super-airy beam with intensified main lobe","authors":"B. Singh, R. Remez, Yuval Tsur, A. Arie","doi":"10.1117/12.2225881","DOIUrl":"https://doi.org/10.1117/12.2225881","url":null,"abstract":"We study, theoretically and experimentally, the concept of non-diffracting super-Airy beam, where the main lobe of the beam is observed to be nearly half in size and with increased intensity compared to the main lobe of the Airy beam. However, reducing the main lobe size does not affect the transverse acceleration and non-spreading features of the beam. Furthermore, we observed that during propagation, super Airy main lobe shows faster self-reconstruction after an obstruction than the Airy main lobe. Therefore, we envision that specifically, a beam with a smaller lobe size and higher intensity can out-perform the Airy beam for applications such as nonlinear optics, curved plasma generation, laser micromachining, and micro- particle manipulation, while the faster reconstruction property of the super-Airy main lobe can surpass the Airy beam in applications of scattering and turbulent media.","PeriodicalId":285152,"journal":{"name":"SPIE Photonics Europe","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116331948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Topič, M. Jošt, M. Sever, M. Filipič, Ž. Lokar, B. Lipovšek, A. Čampa, J. Krč
{"title":"Design challenges for light harvesting in photovoltaic devices","authors":"M. Topič, M. Jošt, M. Sever, M. Filipič, Ž. Lokar, B. Lipovšek, A. Čampa, J. Krč","doi":"10.1117/12.2231756","DOIUrl":"https://doi.org/10.1117/12.2231756","url":null,"abstract":"Device modelling and characterization are indispensable tools in the design of photovoltaic devices. In the contribution we present two challenging issues related to accurate modelling and efficient characterization of light scattering at nanotextured interfaces or other nanophotonic structures used in solar cell technologies. The model based on finite element method, which is upgraded with the Huygens’ expansion theorem is presented. It enables to calculate the angular distribution function of scattered light in the near and far field. It accounts also for the antireflection effects originating from nanoroughnesses. To characterize scattered light efficiently a camera based angular resolved spectroscopy system is presented. It captures the spatial angular distribution function in broad angular range at one shot.","PeriodicalId":285152,"journal":{"name":"SPIE Photonics Europe","volume":"196 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116358796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A fiber-compatible spectrally encoded imaging system using a 45° tilted fiber grating","authors":"Guoqing Wang, Chao Wang, Zhi-quan Yan, Lin Zhang","doi":"10.1117/12.2225140","DOIUrl":"https://doi.org/10.1117/12.2225140","url":null,"abstract":"We propose and demonstrate, for the first time to our best knowledge, the use of a 45° tilted fiber grating (TFG) as an infiber lateral diffraction element in an efficient and fiber-compatible spectrally encoded imaging (SEI) system. Under proper polarization control, the TFG has significantly enhanced diffraction efficiency (93.5%) due to strong tilted reflection. Our conceptually new fiber-topics-based design eliminates the need for bulky and lossy free-space diffraction gratings, significantly reduces the volume and cost of the imaging system, improves energy efficiency, and increases system stability. As a proof-of-principle experiment, we use the proposed system to perform an one dimensional (1D) line scan imaging of a customer-designed three-slot sample and the results show that the constructed image matches well with the actual sample. The angular dispersion of the 45° TFG is measured to be 0.054°/nm and the lateral resolution of the SEI system is measured to be 28 μm in our experiment.","PeriodicalId":285152,"journal":{"name":"SPIE Photonics Europe","volume":"132 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114522299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent progress of quantum communication in China (Conference Presentation)","authors":"Qiang Zhang","doi":"10.1117/12.2228229","DOIUrl":"https://doi.org/10.1117/12.2228229","url":null,"abstract":"Quantum communication, based on the quantum physics, can provide information theoretical security. Building a global quantum network is one ultimate goal for the research of quantum information. Here, this talk will review the progress for quantum communication in China, including quantum key distribution over metropolitan area with untrustful relay, field test of quantum entanglement swapping over metropolitan network, the 2000 km quantum key distribution main trunk line, and satellite based quantum communication.","PeriodicalId":285152,"journal":{"name":"SPIE Photonics Europe","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115302311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}