M. Topič, M. Jošt, M. Sever, M. Filipič, Ž. Lokar, B. Lipovšek, A. Čampa, J. Krč
{"title":"光电器件中光收集的设计挑战","authors":"M. Topič, M. Jošt, M. Sever, M. Filipič, Ž. Lokar, B. Lipovšek, A. Čampa, J. Krč","doi":"10.1117/12.2231756","DOIUrl":null,"url":null,"abstract":"Device modelling and characterization are indispensable tools in the design of photovoltaic devices. In the contribution we present two challenging issues related to accurate modelling and efficient characterization of light scattering at nanotextured interfaces or other nanophotonic structures used in solar cell technologies. The model based on finite element method, which is upgraded with the Huygens’ expansion theorem is presented. It enables to calculate the angular distribution function of scattered light in the near and far field. It accounts also for the antireflection effects originating from nanoroughnesses. To characterize scattered light efficiently a camera based angular resolved spectroscopy system is presented. It captures the spatial angular distribution function in broad angular range at one shot.","PeriodicalId":285152,"journal":{"name":"SPIE Photonics Europe","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design challenges for light harvesting in photovoltaic devices\",\"authors\":\"M. Topič, M. Jošt, M. Sever, M. Filipič, Ž. Lokar, B. Lipovšek, A. Čampa, J. Krč\",\"doi\":\"10.1117/12.2231756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Device modelling and characterization are indispensable tools in the design of photovoltaic devices. In the contribution we present two challenging issues related to accurate modelling and efficient characterization of light scattering at nanotextured interfaces or other nanophotonic structures used in solar cell technologies. The model based on finite element method, which is upgraded with the Huygens’ expansion theorem is presented. It enables to calculate the angular distribution function of scattered light in the near and far field. It accounts also for the antireflection effects originating from nanoroughnesses. To characterize scattered light efficiently a camera based angular resolved spectroscopy system is presented. It captures the spatial angular distribution function in broad angular range at one shot.\",\"PeriodicalId\":285152,\"journal\":{\"name\":\"SPIE Photonics Europe\",\"volume\":\"196 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Photonics Europe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2231756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Photonics Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2231756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design challenges for light harvesting in photovoltaic devices
Device modelling and characterization are indispensable tools in the design of photovoltaic devices. In the contribution we present two challenging issues related to accurate modelling and efficient characterization of light scattering at nanotextured interfaces or other nanophotonic structures used in solar cell technologies. The model based on finite element method, which is upgraded with the Huygens’ expansion theorem is presented. It enables to calculate the angular distribution function of scattered light in the near and far field. It accounts also for the antireflection effects originating from nanoroughnesses. To characterize scattered light efficiently a camera based angular resolved spectroscopy system is presented. It captures the spatial angular distribution function in broad angular range at one shot.