Chemistry and Physics of Lipids最新文献

筛选
英文 中文
Non-lamellar lyotropic liquid crystalline nanoparticles as nanocarriers for enhanced drug encapsulation of atorvastatin calcium and proanthocyanidins 作为纳米载体增强阿托伐他汀钙和原花青素的药物包封的非喇嘛溶液结晶纳米颗粒
IF 3.4 3区 生物学
Chemistry and Physics of Lipids Pub Date : 2024-02-05 DOI: 10.1016/j.chemphyslip.2024.105377
Mardhiah Maslizan , Muhammad Salahuddin Haris , Mokrish Ajat , Siti Nurul Ain Md Jamil , Shah Christirani Azhar , N. Idayu Zahid , Intan Diana Mat Azmi
{"title":"Non-lamellar lyotropic liquid crystalline nanoparticles as nanocarriers for enhanced drug encapsulation of atorvastatin calcium and proanthocyanidins","authors":"Mardhiah Maslizan ,&nbsp;Muhammad Salahuddin Haris ,&nbsp;Mokrish Ajat ,&nbsp;Siti Nurul Ain Md Jamil ,&nbsp;Shah Christirani Azhar ,&nbsp;N. Idayu Zahid ,&nbsp;Intan Diana Mat Azmi","doi":"10.1016/j.chemphyslip.2024.105377","DOIUrl":"10.1016/j.chemphyslip.2024.105377","url":null,"abstract":"<div><p>Atorvastatin calcium (ATV) and proanthocyanidins (PAC) have a strong antioxidant activity, that can benefit to reduce the atherosclerotic plaque progression. Unfortunately, the bioavailability of ATV is greatly reduced due to its limited drug solubility while the PAC drug is unstable upon exposure to the atmospheric oxygen. Herein, the lyotropic liquid crystalline nanoparticles (LLCNPs) constructed by a binary mixture of soy phosphatidylcholine (SPC) and citric acid ester of monoglyceride (citrem) at different weight ratios were used to encapsulate the hydrophobic ATV and hydrophilic PAC. The LLCNPs were further characterized by small-angle X-ray scattering and dynamic light scattering. Depending on the lipid composition, the systems have a size range of 140–190 nm and were able to encapsulate both drugs in the range of 90–100%. Upon increasing the citrem content of drug-loaded LLCNPs, the hexosomes (H<sub>2</sub>) was completely transformed to an emulsified inverse micellar (L<sub>2</sub>). The optimum encapsulation efficiency (EE) of ATV and PAC were obtained in citrem/SPC weight ratio 4:1 (L<sub>2</sub>) and 1:1 (H<sub>2</sub>), respectively. There was a substantial change in the mean size and PDI of the nanoparticles upon 30 days of storage with the ATV-loaded LLCNPs exhibiting greater colloidal instability than PAC-loaded LLCNPs. The biphasic released pattern (burst released at the initial stage followed by the sustained released at the later stage) was perceived in ATV formulation, while the burst drug released pattern was observed in PAC formulations that could be attributed by its internal H<sub>2</sub> structure. Interestingly, the cytokine studies showed that the PAC-LLCNPs promisingly up regulate the expressions of tumor necrosis factor-alpha (TNF-α) better than the drug-free and ATV-loaded LLCNPs samples. The structural tunability of citrem/SPC nanoparticles and their effect on physicochemical characteristic, biological activities and potential as an alternative drug delivery platform in the treatment of atherosclerosis are discussed.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"260 ","pages":"Article 105377"},"PeriodicalIF":3.4,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139688629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bottom-up approach to explore alpha-amylase assisted membrane remodelling 探索α-淀粉酶辅助膜重塑的自下而上方法
IF 3.4 3区 生物学
Chemistry and Physics of Lipids Pub Date : 2024-01-02 DOI: 10.1016/j.chemphyslip.2023.105374
Harshit Kumar , Sayar Mandal , Reena Yadav , Suhasi Gupta , Hemraj Meena , Mayur Kadu , Rajni Kudawla , Pratibha Sharma , Indu Pal Kaur , Subhabrata Maiti , John H. Ipsen , Tripta Bhatia
{"title":"Bottom-up approach to explore alpha-amylase assisted membrane remodelling","authors":"Harshit Kumar ,&nbsp;Sayar Mandal ,&nbsp;Reena Yadav ,&nbsp;Suhasi Gupta ,&nbsp;Hemraj Meena ,&nbsp;Mayur Kadu ,&nbsp;Rajni Kudawla ,&nbsp;Pratibha Sharma ,&nbsp;Indu Pal Kaur ,&nbsp;Subhabrata Maiti ,&nbsp;John H. Ipsen ,&nbsp;Tripta Bhatia","doi":"10.1016/j.chemphyslip.2023.105374","DOIUrl":"10.1016/j.chemphyslip.2023.105374","url":null,"abstract":"<div><p><span>Soluble alpha-amylases play an important role in the catabolism of polysaccharides. In this work, we show that the malt </span><em>α</em><span><span><span> -amylase can interact with the lipid membrane<span> and further alter its mechanical properties. Vesicle fluctuation spectroscopy is used for quantitative measurement<span> of the membrane bending rigidity of phosphatidylcholines </span></span></span>lipid vesicles from the shape fluctuation based on the whole contour of Giant </span>Unilamellar Vesicles<span> (GUVs). The bending rigidity of the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine lipid vesicles in water increases significantly with the presence of 0.14 micromolar alpha-amylase (AA) in the exterior solution. It appears that the enzyme<span> present in the external solution interacts with the outer layer of the bilayer membrane, leading to an asymmetry of the solution on either side of the bilayer membrane and altering its elasticity. At AA concentration of 1.5 micromolars and above, changes in the morphology of the GUV membrane are observed. The interaction between AA in the external solution and the external leaflet causes the bilayer membrane to curve spontaneously, leading to the formation of outbuds, giving a positive spontaneous curvature of </span></span></span><em>C</em><sub>0</sub> ≤ 0.05 <em>μ</em>m<sup>−1</sup><span> at ≈ 1 mg / ml of the AA concentration. We validate and characterize its concentration-dependent role in stabilizing the membrane curvature. Our findings indicate that the involvement of the enzyme, depending on the concentration, can have a considerable effect on the mechanical characteristics of the membrane.</span></p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"259 ","pages":"Article 105374"},"PeriodicalIF":3.4,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139095368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of glucose and fructose on lipid droplet metabolism in human normal bronchial and cancer lung cells by Raman spectroscopy 通过拉曼光谱分析葡萄糖和果糖对人体正常支气管细胞和癌肺细胞脂滴代谢的作用
IF 3.4 3区 生物学
Chemistry and Physics of Lipids Pub Date : 2023-12-29 DOI: 10.1016/j.chemphyslip.2023.105375
Monika Kopec, Karolina Beton-Mysur
{"title":"The role of glucose and fructose on lipid droplet metabolism in human normal bronchial and cancer lung cells by Raman spectroscopy","authors":"Monika Kopec,&nbsp;Karolina Beton-Mysur","doi":"10.1016/j.chemphyslip.2023.105375","DOIUrl":"10.1016/j.chemphyslip.2023.105375","url":null,"abstract":"<div><p>Fructose is one of the most important monosaccharides in the human diet that the human body needs for proper metabolism. This paper presents an approach to study biochemical changes caused by sugars in human normal bronchial cells (BEpiC) and human cancer lung cells (A549) by Raman spectroscopy and Raman imaging. Results after supplementation of human bronchial and lung cells with fructose are also discussed and compared with results obtained for pure human bronchial and lung cells. Based on Raman techniques we have proved that peaks at 750 cm<sup>−1</sup>, 1126 cm<sup>−1</sup>, 1444 cm<sup>−1</sup>, 1584 cm<sup>−1</sup> and 2845 cm<sup>−1</sup> can be treated as biomarkers to monitor fructose changes in cells. Results for fructose have been compared with results for glucose. Raman analysis of the bands at 750 cm<sup>−1</sup>, 1126 cm<sup>−1</sup>, 1584 cm<sup>−1</sup> and 2845 cm<sup>−1</sup> for pure BEpiC and A549 cells and BEpiC and A549 after supplementation with fructose and glucose are higher after supplementation with fructose in comparison to glucose. The obtained results shed light on the uninvestigated influence of glucose and fructose on lipid droplet metabolism by Raman spectroscopy methods.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"259 ","pages":"Article 105375"},"PeriodicalIF":3.4,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S000930842300097X/pdfft?md5=665ff1b34c9da1f8e4adcc3bcf6d4f0f&pid=1-s2.0-S000930842300097X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139072262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel bioactive lipids enhanced HDL-mediated cholesterol efflux from macrophages through the ABCA1 receptor pathway 新型生物活性脂质通过 ABCA1 受体途径增强了高密度脂蛋白介导的巨噬细胞胆固醇外流。
IF 3.4 3区 生物学
Chemistry and Physics of Lipids Pub Date : 2023-12-15 DOI: 10.1016/j.chemphyslip.2023.105367
Ali Khattib , Manar Shmet , Rasha Ashkar , Tony Hayek , Soliman Khatib
{"title":"Novel bioactive lipids enhanced HDL-mediated cholesterol efflux from macrophages through the ABCA1 receptor pathway","authors":"Ali Khattib ,&nbsp;Manar Shmet ,&nbsp;Rasha Ashkar ,&nbsp;Tony Hayek ,&nbsp;Soliman Khatib","doi":"10.1016/j.chemphyslip.2023.105367","DOIUrl":"10.1016/j.chemphyslip.2023.105367","url":null,"abstract":"<div><p>High-density lipoprotein (HDL) has traditionally been acknowledged as \"good cholesterol\" owing to its significant association with a decreased risk of atherosclerosis. This association is primarily attributed to HDL's direct involvement in cholesterol efflux capacity, which plays a pivotal role in reverse cholesterol transport. A novel active compound from <em>Nannochloropsis</em> microalgae termed lyso-DGTS, a lipid that contains EPA fatty acids, was previously isolated and found to increase paraoxonase 1 activity and enhance HDL-mediated cholesterol efflux and HDL-induced endothelial nitric oxide release. Here, the effect of different lyso-DGTS derivatives and analogs on HDL-mediated cholesterol efflux from macrophages was examined, and the mechanism was explored. Structure–activity relationships were established to characterize the essential lipid moieties responsible for HDL-mediated cholesterol efflux from macrophages. Lyso-DGTS, 1-carboxy-N-N-N-trimethyl-3-oleamidopropan-1-aminium, and lyso-platelet-activating factor increased HDL-mediated cholesterol efflux from macrophages dose-dependently, mainly via the ABCA1-mediated cholesterol efflux pathway. The effect of lyso-DGTS derivatives and analogs on the surface polarity of HDL was examined using the Laurdan generalized polarization (GP) assay. A reverse Pearson linear regression was obtained between Laurdan GP values and HDL-mediated cholesterol efflux. Because the incorporation of bioactive lipids into the surface phospholipid layer of HDL leads to a decrease in Laurdan GP, these bioactive lipids may induce lower phospholipid ordering and greater free space on the HDL particle surface, thereby enhancing apolipoprotein A1 binding to the ABCA1 receptor and improving ABCA1 cholesterol-mediated efflux. Our findings suggest a beneficial effect of lyso-DGTS and its bioactive lipid derivatives on increasing HDL-mediated cholesterol efflux activity from macrophages, which may impact atherosclerosis attenuation.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"258 ","pages":"Article 105367"},"PeriodicalIF":3.4,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0009308423000890/pdfft?md5=7ea020d7c9ebc26c842f5b41912c42ee&pid=1-s2.0-S0009308423000890-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138687540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural changes in layers of lipid mixtures at low surface tensions 低表面张力下脂质混合物层的结构变化
IF 3.4 3区 生物学
Chemistry and Physics of Lipids Pub Date : 2023-12-12 DOI: 10.1016/j.chemphyslip.2023.105365
A.G. Bykov , M.A. Panaeva , O.Y. Milyaeva , A.V. Michailov , A.R. Rafikova , E. Guzman , R. Rubio , R. Miller , B.A. Noskov
{"title":"Structural changes in layers of lipid mixtures at low surface tensions","authors":"A.G. Bykov ,&nbsp;M.A. Panaeva ,&nbsp;O.Y. Milyaeva ,&nbsp;A.V. Michailov ,&nbsp;A.R. Rafikova ,&nbsp;E. Guzman ,&nbsp;R. Rubio ,&nbsp;R. Miller ,&nbsp;B.A. Noskov","doi":"10.1016/j.chemphyslip.2023.105365","DOIUrl":"10.1016/j.chemphyslip.2023.105365","url":null,"abstract":"<div><p>Layers of pulmonary lipids on an aqueous substrate at non-equilibrium conditions can decrease the surface tension of water to quite low values. This is connected with different relaxation processes occurring at the interface and the associated changes in the surface layer structure. Results of measurements by the combination of methods like surface rheology, ellipsometry, Brewster angle microscopy, and IRRAS for spread layers of lipid mixtures open a possibility to specify the dynamics of structural changes at conditions close to the physiological state. At sufficiently low surface tension values (below 5 mN/m) significant changes in the ellipsometric signal were observed for pure DPPC layers, which can be related to a transition from 2D to 3D structures caused by the layer folding. The addition of other lipids can accelerate the relaxation processes connected with squeezing-out of molecules or multilayer stacks formation hampering thereby a decrease of surface tension down to low values corresponding to the folding of the monolayer.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"258 ","pages":"Article 105365"},"PeriodicalIF":3.4,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0009308423000877/pdfft?md5=c6ea824731de0addde49f7c4c3e09c51&pid=1-s2.0-S0009308423000877-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138687102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Closer look at the calorimetric lower transition in lipid bilayers 近距离观察脂质双分子层中的热量测定下转变
IF 3.4 3区 生物学
Chemistry and Physics of Lipids Pub Date : 2023-12-09 DOI: 10.1016/j.chemphyslip.2023.105366
Sophia A. Korono, John F. Nagle
{"title":"Closer look at the calorimetric lower transition in lipid bilayers","authors":"Sophia A. Korono,&nbsp;John F. Nagle","doi":"10.1016/j.chemphyslip.2023.105366","DOIUrl":"10.1016/j.chemphyslip.2023.105366","url":null,"abstract":"<div><p>The thermal behavior of unilamellar vesicles has been revisited with differential scanning calorimetry to address the issue of whether it is essential to include interactions between neighboring bilayers in theories and simulations of the ripple phase. The issue focuses on the lower, <em>aka</em> pretransition, and the ripple phase that clearly exists between the lower and main transitions in multilamellar vesicles (MLV). We find anomalous thermal behavior in unilamellar vesicles (ULV) beginning at the same temperature as the lower transition in MLVs, but this feature is considerably broadened and somewhat weaker compared to the lower transition in MLVs. We ascribe this to the difficulty of packing a regular ripple pattern on small spheres. In agreement with a few reports of a ripple phase in direct images of single bilayers, we conclude that interactions between neighboring bilayers are not essential for the ripple phase in lipid bilayers.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"259 ","pages":"Article 105366"},"PeriodicalIF":3.4,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0009308423000889/pdfft?md5=40ff883edcd280818ebff926ab6c6002&pid=1-s2.0-S0009308423000889-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138561661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of cationic dendrimer on membrane mimetic systems in the form of monolayer and bilayer 阳离子树状大分子对单层和双层膜模拟体系的影响。
IF 3.4 3区 生物学
Chemistry and Physics of Lipids Pub Date : 2023-11-30 DOI: 10.1016/j.chemphyslip.2023.105364
Biplab Roy , Pritam Guha , Chien-Hsiang Chang , Prasant Nahak , Gourab Karmakar , Alexey G. Bykov , Alexander V. Akentiev , Boris A. Noskov , Anuttam Patra , Kunal Dutta , Chandradipa Ghosh , Amiya Kumar Panda
{"title":"Effect of cationic dendrimer on membrane mimetic systems in the form of monolayer and bilayer","authors":"Biplab Roy ,&nbsp;Pritam Guha ,&nbsp;Chien-Hsiang Chang ,&nbsp;Prasant Nahak ,&nbsp;Gourab Karmakar ,&nbsp;Alexey G. Bykov ,&nbsp;Alexander V. Akentiev ,&nbsp;Boris A. Noskov ,&nbsp;Anuttam Patra ,&nbsp;Kunal Dutta ,&nbsp;Chandradipa Ghosh ,&nbsp;Amiya Kumar Panda","doi":"10.1016/j.chemphyslip.2023.105364","DOIUrl":"10.1016/j.chemphyslip.2023.105364","url":null,"abstract":"<div><p>Interactions between a zwitterionic phospholipid, 1, 2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and four anionic phospholipids dihexadecyl phosphate (DHP), 1, 2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG), 1, 2-dipalmitoyl-sn-glycero-3-phosphate (DPP) and 1, 2-dipalmitoyl-sn-glycero-3-phospho ethanol (DPPEth) in combination with an additional amount of 30 mol% cholesterol were separately investigated at air-buffer interface through surface pressure (π) - area (A) measurements. π-A isotherm derived parameters revealed maximum negative deviation from ideality for the mixtures comprising 30 mol% anionic lipids. Besides the film functionality, structural changes of the monomolecular films at different surface pressures in the absence and presence of polyamidoamine (PAMAM, generation 4), a cationic dendrimer, were visualised through Brewster angle microscopy and fluorescence microscopic studies. Fluidity/rigidity of monolayers were assessed by surface dilatational rheology studies. Effect of PAMAM on the formation of adsorbed monolayer, due to bilayer disintegration of liposomes (DPPC:anionic lipids= 7:3 M/M, and 30 mol% cholesterol) were monitored by surface pressure (π) - time (t) isotherms. Bilayer disintegration kinetics were dependent on lipid head group and chain length, besides dendrimer concentration. Such studies are considered to be an in vitro cell membrane model where the alteration of molecular orientation play important roles in understanding the nature of interaction between the dendrimer and cell membrane. Liposome-dendrimer aggregates were nontoxic to breast cancer cell line as well as in doxorubicin treated MDA-MB-468 cell line suggesting their potential as drug delivery systems.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"258 ","pages":"Article 105364"},"PeriodicalIF":3.4,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0009308423000865/pdfft?md5=c4c51323e058927cf3eee1a594e7134f&pid=1-s2.0-S0009308423000865-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138469583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unsaturation of serine lipids modulating the interaction of a cytosporone with models of the external leaflet of tumorigenic cell membranes 丝氨酸脂的不饱和调节胞啡酮与致瘤细胞膜外小叶模型的相互作用。
IF 3.4 3区 生物学
Chemistry and Physics of Lipids Pub Date : 2023-11-30 DOI: 10.1016/j.chemphyslip.2023.105363
Guilherme Nuñez Jaroque, Augusto Leonardo dos Santos, Patrícia Sartorelli, Luciano Caseli
{"title":"Unsaturation of serine lipids modulating the interaction of a cytosporone with models of the external leaflet of tumorigenic cell membranes","authors":"Guilherme Nuñez Jaroque,&nbsp;Augusto Leonardo dos Santos,&nbsp;Patrícia Sartorelli,&nbsp;Luciano Caseli","doi":"10.1016/j.chemphyslip.2023.105363","DOIUrl":"10.1016/j.chemphyslip.2023.105363","url":null,"abstract":"<div><p>Cytosporone-B was isolated from fungi and incorporated in models of tumorigenic cell membranes using palmitoyloleoylglycerophosphoserine (POPS) and dipalmitoyl glycerophosphoserine (DPPS) lipids. While for DPPS, the compound condensed the monolayer and decreased the surface compressional modulus, it expanded and kept the compressional modulus for POPS. Hysteresis for compression-expansion cycles was more sensitive for POPS than for DPPS, while a high degree of destabilization was observed for POPS. As observed with infrared spectroscopy and Brewster angle microscopy, specific changes were selective regarding molecular organization and morphology. Atomic force microscopy for transferred monolayers as Langmuir-Blodgett films also confirmed such specificities. We believe these data can help understand the mechanism of action of bioactive drugs in lipid interfaces at the molecular level.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"258 ","pages":"Article 105363"},"PeriodicalIF":3.4,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0009308423000853/pdfft?md5=f997a61328a6651b49243b8ca79b906d&pid=1-s2.0-S0009308423000853-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138476416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interactions between macrophage membrane and lipid mediators during cardiovascular diseases with the implications of scavenger receptors 巨噬细胞膜和脂质介质在心血管疾病中与清道夫受体的相互作用。
IF 3.4 3区 生物学
Chemistry and Physics of Lipids Pub Date : 2023-11-23 DOI: 10.1016/j.chemphyslip.2023.105362
Sangeetha Ravi , Livya Catherene Martin , Mahalakshmi Krishnan , Manikandan Kumaresan , Beulaja Manikandan , Manikandan Ramar
{"title":"Interactions between macrophage membrane and lipid mediators during cardiovascular diseases with the implications of scavenger receptors","authors":"Sangeetha Ravi ,&nbsp;Livya Catherene Martin ,&nbsp;Mahalakshmi Krishnan ,&nbsp;Manikandan Kumaresan ,&nbsp;Beulaja Manikandan ,&nbsp;Manikandan Ramar","doi":"10.1016/j.chemphyslip.2023.105362","DOIUrl":"10.1016/j.chemphyslip.2023.105362","url":null,"abstract":"<div><p>The onset and progression of cardiovascular diseases with the major underlying cause being atherosclerosis, occur during chronic inflammatory persistence in the vascular system, especially within the arterial wall. Such prolonged maladaptive inflammation is driven by macrophages and their key mediators are generally attributed to a disparity in lipid metabolism. Macrophages are the primary cells of innate immunity, endowed with expansive membrane domains involved in immune responses with their signalling systems. During atherosclerosis, the membrane domains and receptors control various active organisations of macrophages. Their scavenger/endocytic receptors regulate the trafficking of intracellular and extracellular cargo. Corresponding influence on lipid metabolism is mediated by their dynamic interaction with scavenger membrane receptors and their integrated mechanisms such as pinocytosis, phagocytosis, cholesterol export/import, etc. This interaction not only results in the functional differentiation of macrophages but also modifies their structural configurations. Here, we reviewed the association of macrophage membrane biomechanics and their scavenger receptor families with lipid metabolites during the event of atherogenesis. In addition, the membrane structure of macrophages and the signalling pathways involved in endocytosis integrated with lipid metabolism are detailed. This article establishes future insights into the scavenger receptors as potential targets for cardiovascular disease prevention and treatment.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"258 ","pages":"Article 105362"},"PeriodicalIF":3.4,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0009308423000841/pdfft?md5=17934960823409dc7f16ffeb9760fdd9&pid=1-s2.0-S0009308423000841-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138439974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monitoring galactolipid digestion and simultaneous changes in lipid-bile salt micellar organization by real-time NMR spectroscopy 实时核磁共振监测半乳糖脂消化和脂-胆盐胶束组织的同步变化。
IF 3.4 3区 生物学
Chemistry and Physics of Lipids Pub Date : 2023-11-21 DOI: 10.1016/j.chemphyslip.2023.105361
Moulay Sahaka , Olivier Bornet , Achille Marchand , Dominique Lafont , Brigitte Gontero , Frédéric Carrière , Hélène Launay
{"title":"Monitoring galactolipid digestion and simultaneous changes in lipid-bile salt micellar organization by real-time NMR spectroscopy","authors":"Moulay Sahaka ,&nbsp;Olivier Bornet ,&nbsp;Achille Marchand ,&nbsp;Dominique Lafont ,&nbsp;Brigitte Gontero ,&nbsp;Frédéric Carrière ,&nbsp;Hélène Launay","doi":"10.1016/j.chemphyslip.2023.105361","DOIUrl":"10.1016/j.chemphyslip.2023.105361","url":null,"abstract":"<div><p>The use of Nuclear Magnetic Resonance spectroscopy for studying lipid digestion in vitro most often consists of quantifying lipolysis products after they have been extracted from the reaction medium using organic solvents. However, the current sensitivity level of NMR spectrometers makes possible to avoid the extraction step and continuously quantify the lipids directly in the reaction medium. We used real-time <sup>1</sup>H NMR spectroscopy and guinea pig pancreatic lipase-related protein 2 (GPLRP2) as biocatalyst to monitor in situ the lipolysis of monogalactosyl diacylglycerol (MGDG) in the form of mixed micelles with the bile salt sodium taurodeoxycholate (NaTDC). Residual substrate and lipolysis products (monogalactosyl monoacylglycerol (MGMG); monogalactosylglycerol (MGG) and octanoic acid (OA) were simultaneously quantified throughout the reaction thanks to specific proton resonances. Lipolysis was complete with the release of all MGDG fatty acids. These results were confirmed by thin layer chromatography (TLC) and densitometry after lipid extraction at different reaction times. Using diffusion-ordered NMR spectroscopy (DOSY), we could also estimate the diffusion coefficients of all the reaction compounds and deduce the hydrodynamic radius of the lipid aggregates in which they were present. It was shown that MGDG-NaTDC mixed micelles with an initial hydrodynamic radius r<sub>H</sub> of 7.3 ± 0.5 nm were changed into smaller micelles of NaTDC-MGDG-MGMG of 2.3 ± 0.5 nm in the course of the lipolysis reaction, and finally into NaTDC-OA mixed micelles (r<sub>H</sub> of 2.9 ± 0.5 nm) and water soluble MGG. These results provide a better understanding of the digestion of galactolipids by PLRP2, a process that leads to the complete micellar solubilisation of their fatty acids and renders their intestinal absorption possible.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"258 ","pages":"Article 105361"},"PeriodicalIF":3.4,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S000930842300083X/pdfft?md5=7949f0a6afc8b93348193638444baadc&pid=1-s2.0-S000930842300083X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138045681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信