{"title":"Laurdan in living cells: Where do we stand?","authors":"L Stefania Vargas-Velez, Natalia Wilke","doi":"10.1016/j.chemphyslip.2024.105458","DOIUrl":null,"url":null,"abstract":"<p><p>Laurdan is a valuable tool for analyzing phase transitions and general behavior in synthetic lipid membranes. Its use is very straightforward, thus, its application in cells has expanded rapidly in recent years. It has been demonstrated that Laurdan is very useful for analyzing membrane trends when cells are subjected to some treatment, or when different cell mutations are compared. However, a deep interpretation of the data is not as straightforward as in synthetic lipid bilayers. In this review, we complied results found in mammalian and bacterial cells and noted that the use of Laurdan could be improved if a comparison between publications could be done. At the moment this is not easy, mainly due to the lack of complete information in the publications, and to the different methodologies employed in the data recording and processing. We conclude that research in cell membrane topics would benefit from a better use of the Laurdan probe.</p>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":" ","pages":"105458"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Physics of Lipids","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.chemphyslip.2024.105458","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Laurdan is a valuable tool for analyzing phase transitions and general behavior in synthetic lipid membranes. Its use is very straightforward, thus, its application in cells has expanded rapidly in recent years. It has been demonstrated that Laurdan is very useful for analyzing membrane trends when cells are subjected to some treatment, or when different cell mutations are compared. However, a deep interpretation of the data is not as straightforward as in synthetic lipid bilayers. In this review, we complied results found in mammalian and bacterial cells and noted that the use of Laurdan could be improved if a comparison between publications could be done. At the moment this is not easy, mainly due to the lack of complete information in the publications, and to the different methodologies employed in the data recording and processing. We conclude that research in cell membrane topics would benefit from a better use of the Laurdan probe.
期刊介绍:
Chemistry and Physics of Lipids publishes research papers and review articles on chemical and physical aspects of lipids with primary emphasis on the relationship of these properties to biological functions and to biomedical applications.
Accordingly, the journal covers: advances in synthetic and analytical lipid methodology; mass-spectrometry of lipids; chemical and physical characterisation of isolated structures; thermodynamics, phase behaviour, topology and dynamics of lipid assemblies; physicochemical studies into lipid-lipid and lipid-protein interactions in lipoproteins and in natural and model membranes; movement of lipids within, across and between membranes; intracellular lipid transfer; structure-function relationships and the nature of lipid-derived second messengers; chemical, physical and functional alterations of lipids induced by free radicals; enzymatic and non-enzymatic mechanisms of lipid peroxidation in cells, tissues, biofluids; oxidative lipidomics; and the role of lipids in the regulation of membrane-dependent biological processes.