2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)最新文献

筛选
英文 中文
Tunable Precision Control for Approximate Image Filtering in an In-Memory Architecture with Embedded Neurons 基于嵌入神经元的内存结构中近似图像滤波的可调精度控制
2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) Pub Date : 2022-10-29 DOI: 10.1145/3508352.3549385
Ayushi Dube, Ankit Wagle, G. Singh, S. Vrudhula
{"title":"Tunable Precision Control for Approximate Image Filtering in an In-Memory Architecture with Embedded Neurons","authors":"Ayushi Dube, Ankit Wagle, G. Singh, S. Vrudhula","doi":"10.1145/3508352.3549385","DOIUrl":"https://doi.org/10.1145/3508352.3549385","url":null,"abstract":"This paper presents a novel hardware-software co-design consisting of a Processing in-Memory (PiM) architecture with embedded neural processing elements (NPE) that are highly reconfigurable. The PiM platform and proposed approximation strategies are employed for various image filtering applications while providing the user with fine-grain dynamic control over energy efficiency, precision, and throughput (EPT). The proposed co-design can change the Peak Signal to Noise Ratio (PSNR, output quality metric for image filtering applications) from 25dB to 50dB (acceptable PSNR range for image filtering applications) without incurring any extra cost in terms of energy or latency. While switching from accurate to approximate mode of computation in the proposed co-design, the maximum improvement in energy efficiency and throughput is 2X. However, the gains in energy efficiency against a MAC-based PE array with the proposed memory platform are 3X-6X. The corresponding improvements in throughput are 2.26X-4.52X, respectively.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127653229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards High-Quality CGRA Mapping with Graph Neural Networks and Reinforcement Learning 用图神经网络和强化学习实现高质量的CGRA映射
2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) Pub Date : 2022-10-29 DOI: 10.1145/3508352.3549458
Yan Zhuang, Zhihao Zhang, Dajiang Liu
{"title":"Towards High-Quality CGRA Mapping with Graph Neural Networks and Reinforcement Learning","authors":"Yan Zhuang, Zhihao Zhang, Dajiang Liu","doi":"10.1145/3508352.3549458","DOIUrl":"https://doi.org/10.1145/3508352.3549458","url":null,"abstract":"Coarse-Grained Reconfigurable Architectures (CGRA) is a promising solution to accelerate domain applications due to its good combination of energy-efficiency and flexibility. Loops, as computation-intensive parts of applications, are often mapped onto CGRA and modulo scheduling is commonly used to improve the execution performance. However, the actual performance using modulo scheduling is highly dependent on the mapping ability of the Data Dependency Graph (DDG) extracted from a loop. As existing approaches usually separate routing exploration of multi-cycle dependence from mapping for fast compilation, they may easily suffer from poor mapping quality. In this paper, we integrate the routing explorations into the mapping process and make it have more opportunities to find a globally optimized solution. Meanwhile, with a reduced resource graph defined, the searching space of the new mapping problem is not greatly increased. To efficiently solve the problem, we introduce graph neural network based reinforcement learning to predict a placement distribution over different resource nodes for all operations in a DDG. Using the routing connectivity as the reward signal, we optimize the parameters of neural network to find a valid mapping solution with a policy gradient method. Without much engineering and heuristic designing, our approach achieves 1.57× mapping quality, as compared to the state-of-the-art heuristic.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114394819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Automatic Test Configuration and Pattern Generation (ATCPG) for Neuromorphic Chips 神经形态芯片的自动测试配置和模式生成(ATCPG
2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) Pub Date : 2022-10-29 DOI: 10.1145/3508352.3549422
I. Chiu, Xin-Ping Chen, Jennifer Shueh-Inn Hu, C. Li
{"title":"Automatic Test Configuration and Pattern Generation (ATCPG) for Neuromorphic Chips","authors":"I. Chiu, Xin-Ping Chen, Jennifer Shueh-Inn Hu, C. Li","doi":"10.1145/3508352.3549422","DOIUrl":"https://doi.org/10.1145/3508352.3549422","url":null,"abstract":"The demand for low-power, high-performance neuromorphic chips is increasing. However, conventional testing is not applicable to neuromorphic chips due to three reasons: (1) lack of scan DfT, (2) stochastic characteristic, and (3) configurable functionality. In this paper, we present an automatic test configuration and pattern generation (ATCPG) method for testing a configurable stochastic neuromorphic chip without using scan DfT. We use machine learning to generate test configurations. Then, we apply a modified fast gradient sign method to generate test patterns. Finally, we determine test repetitions with statistical power of test. We conduct experiments on one of the neuromorphic architectures, spiking neural network, to evaluate the effectiveness of our ATCPG. The experimental results show that our ATCPG can achieve 100% fault coverage for the five fault models we use. For testing a 3-layer model at 0.05 significant level, we produce 5 test configurations and 67 test patterns. The average test repetitions of neuron faults and synapse faults are 2,124 and 4,557, respectively. Besides, our simulation results show that the overkill matched our significance level perfectly.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122121026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2022 ICCAD CAD Contest Problem C: Microarchitecture Design Space Exploration 2022年ICCAD设计竞赛题目C:微建筑设计空间探索
2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) Pub Date : 2022-10-29 DOI: 10.1145/3508352.3561109
Sicheng Li, Chen Bai, Xuechao Wei, Bizhao Shi, Yen-Kuang Chen, Yuan Xie
{"title":"2022 ICCAD CAD Contest Problem C: Microarchitecture Design Space Exploration","authors":"Sicheng Li, Chen Bai, Xuechao Wei, Bizhao Shi, Yen-Kuang Chen, Yuan Xie","doi":"10.1145/3508352.3561109","DOIUrl":"https://doi.org/10.1145/3508352.3561109","url":null,"abstract":"It is vital to select microarchitectures to achieve good trade-offs between performance, power, and area in the chip development cycle. Combining high-level hardware description languages and optimization of electronic design automation tools empowers microarchitecture exploration at the circuit level. Due to the extremely large design space and high runtime cost to evaluate a microarchitecture, ICCAD 2022 CAD Contest Problem C calls for an effective design space exploration algorithm to solve the problem. We formulate the research topic as a contest problem and provide benchmark suites, contest benchmark platforms, etc., for all contestants to innovate and estimate their algorithms.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"14 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132119600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Language Equation Solving via Boolean Automata Manipulation 通过布尔自动机操作求解语言方程
2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) Pub Date : 2022-10-29 DOI: 10.1145/3508352.3549428
Wan-Hsuan Lin, Chia-Hsuan Su, J. H. Jiang
{"title":"Language Equation Solving via Boolean Automata Manipulation","authors":"Wan-Hsuan Lin, Chia-Hsuan Su, J. H. Jiang","doi":"10.1145/3508352.3549428","DOIUrl":"https://doi.org/10.1145/3508352.3549428","url":null,"abstract":"Language equations are a powerful tool for compositional synthesis, modeled as the unknown component problem. Given a (sequential) system specification S and a fixed component F, we are asked to synthesize an unknown component X such that whose composition with F fulfills S. The synthesis of X can be formulated with language equation solving. Although prior work exploits partitioned representation for effective finite automata manipulation, it remains challenging to solve language equations involving a large number of states. In this work, we propose variants of Boolean automata as the underlying succinct representation for regular languages. They admit logic circuit manipulation and extend the scalability for solving language equations. Experimental results demonstrate the superiority of our method to the state-of-the-art in solving nine more cases out of the 36 studied benchmarks and achieving an average of 740× speedup.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133487612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hardware Architecture of Graph Neural Network-enabled Motion Planner (Invited Paper) 基于图神经网络的运动规划器硬件架构(特邀论文)
2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) Pub Date : 2022-10-29 DOI: 10.1145/3508352.3561113
Lingyi Huang, Xiao Zang, Yu Gong, Bo Yuan
{"title":"Hardware Architecture of Graph Neural Network-enabled Motion Planner (Invited Paper)","authors":"Lingyi Huang, Xiao Zang, Yu Gong, Bo Yuan","doi":"10.1145/3508352.3561113","DOIUrl":"https://doi.org/10.1145/3508352.3561113","url":null,"abstract":"Motion planning aims to find a collision-free trajectory from the start to goal configurations of a robot. As a key cognition task for all the autonomous machines, motion planning is fundamentally required in various real-world robotic applications, such as 2-D/3-D autonomous navigation of unmanned mobile and aerial vehicles and high degree-of-freedom (DoF) autonomous manipulation of industry/medical robot arms and graspers.Motion planning can be performed using either non-learning- based classical algorithms or learning-based neural approaches. Most recently, the powerful capabilities of deep neural networks (DNNs) make neural planners become very attractive because of their superior planning performance over the classical methods. In particular, graph neural network (GNN)-enabled motion planner has demonstrated the state-of-the-art performance across a set of challenging high-dimensional planning tasks, motivating the efficient hardware acceleration to fully unleash its potential and promote its widespread deployment in practical applications.To that end, in this paper we perform preliminary study of the efficient accelerator design of the GNN-based neural planner, especially for the neural explorer as the key component of the entire planning pipeline. By performing in-depth analysis on the different design choices, we identify that the hybrid architecture, instead of the uniform sparse matrix multiplication (SpMM)-based solution that is popularly adopted in the existing GNN hardware, is more suitable for our target neural explorer. With a set of optimization on microarchitecture and dataflow, several design challenges incurred by using hybrid architecture, such as extensive memory access and imbalanced workload, can be efficiently mitigated. Evaluation results show that our proposed customized hardware architecture achieves order-of-magnitude performance improvement over the CPU/GPU-based implementation with respect to area and energy efficiency in various working environments.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116647261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Obstacle-Avoiding Multiple Redistribution Layer Routing with Irregular Structures* 不规则结构的多重分布层避障路由*
2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) Pub Date : 2022-10-29 DOI: 10.1145/3508352.3549419
Yen-Ting Chen, Yao-Wen Chang
{"title":"Obstacle-Avoiding Multiple Redistribution Layer Routing with Irregular Structures*","authors":"Yen-Ting Chen, Yao-Wen Chang","doi":"10.1145/3508352.3549419","DOIUrl":"https://doi.org/10.1145/3508352.3549419","url":null,"abstract":"In advanced packages, redistribution layers (RDLs) are extra metal layers for high interconnections among the chips and printed circuit board (PCB). To better utilize the routing resources of RDLs, published works adopted flexible vias such that they can place the vias everywhere. Furthermore, some regions may be blocked for signal integrity protection or manually prerouted nets (such as power/ground nets or feeding lines of antennas) to achieve higher performance. These blocked regions will be treated as obstacles in the routing process. Since the positions of pads, obstacles, and vias can be arbitrary, the structures of RDLs become irregular. The obstacles and irregular structures substantially increase the difficulty of the routing process. This paper proposes a three-stage algorithm: First, the layout is partitioned by a method based on constrained Delaunay triangulation (CDT). Then we present a global routing graph model and generate routing guides for unified-assignment netlists. Finally, a novel tile routing method is developed to obtain detailed routes. Experiment results demonstrate the robustness and effectiveness of our proposed algorithm.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115295626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analyzing and Improving Resilience and Robustness of Autonomous Systems (Invited Paper) 分析和改进自治系统的弹性和鲁棒性(特邀论文)
2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) Pub Date : 2022-10-29 DOI: 10.1145/3508352.3561111
Zishen Wan, Karthik Swaminathan, Pin-Yu Chen, Nandhini Chandramoorthy, A. Raychowdhury
{"title":"Analyzing and Improving Resilience and Robustness of Autonomous Systems (Invited Paper)","authors":"Zishen Wan, Karthik Swaminathan, Pin-Yu Chen, Nandhini Chandramoorthy, A. Raychowdhury","doi":"10.1145/3508352.3561111","DOIUrl":"https://doi.org/10.1145/3508352.3561111","url":null,"abstract":"Autonomous systems have reached a tipping point, with a myriad of self-driving cars, unmanned aerial vehicles (UAVs), and robots being widely applied and revolutionizing new applications. The continuous deployment of autonomous systems reveals the need for designs that facilitate increased resiliency and safety. The ability of an autonomous system to tolerate, or mitigate against errors, such as environmental conditions, sensor, hardware and software faults, and adversarial attacks, is essential to ensure its functional safety. Application-aware resilience metrics, holistic fault analysis frameworks, and lightweight fault mitigation techniques are being proposed for accurate and effective resilience and robustness assessment and improvement. This paper explores the origination of fault sources across the computing stack of autonomous systems, discusses the various fault impacts and fault mitigation techniques of different scales of autonomous systems, and concludes with challenges and opportunities for assessing and building next-generation resilient and robust autonomous systems.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130547189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Graph Neural Networks for Idling Error Mitigation 缓解空转错误的图神经网络
2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) Pub Date : 2022-10-29 DOI: 10.1145/3508352.3549444
Vedika Servanan, S. Saeed
{"title":"Graph Neural Networks for Idling Error Mitigation","authors":"Vedika Servanan, S. Saeed","doi":"10.1145/3508352.3549444","DOIUrl":"https://doi.org/10.1145/3508352.3549444","url":null,"abstract":"Dynamical Decoupling (DD)-based protocols have been shown to reduce the idling errors encountered in quantum circuits. However, the current research in suppressing idling qubit errors suffers from scalability issues due to the large number of tuning quantum circuits that should be executed first to find the locations of the DD sequences in the target quantum circuit, which boost the output state fidelity. This process becomes tedious as the size of the quantum circuit increases. To address this challenge, we propose a Graph Neural Network (GNN) framework, which mitigates idling errors through an efficient insertion of DD sequences into quantum circuits by modeling their impact at different idle qubit windows. Our paper targets maximizing the benefit of DD sequences using a limited number of tuning circuits. We propose to classify the idle qubit windows into critical and non-critical (benign) windows using a data-driven reliability model. Our results obtained from IBM Lagos quantum computer show that our proposed GNN models, which determine the locations of DD sequences in the quantum circuits, significantly improve the output state fidelity by a factor of 1.4x on average and up to 2.6x compared to the adaptive DD approach, which searches for the best locations of DD sequences at run-time.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128868935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Learning Toolkit-Accelerated Analytical Co-optimization of CNN Hardware and Dataflow 深度学习工具包-加速CNN硬件和数据流的分析协同优化
2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) Pub Date : 2022-10-29 DOI: 10.1145/3508352.3549402
Rongjian Liang, Jianfeng Song, Yuan Bo, Jiang Hu
{"title":"Deep Learning Toolkit-Accelerated Analytical Co-optimization of CNN Hardware and Dataflow","authors":"Rongjian Liang, Jianfeng Song, Yuan Bo, Jiang Hu","doi":"10.1145/3508352.3549402","DOIUrl":"https://doi.org/10.1145/3508352.3549402","url":null,"abstract":"The continuous growth of CNN complexity not only intensifies the need for hardware acceleration but also presents a huge challenge. That is, the solution space for CNN hardware design and dataflow mapping becomes enormously large besides the fact that it is discrete and lacks a well behaved structure. Most previous works either are stochastic metaheuristics, such as genetic algorithm, which are typically very slow for solving large problems, or rely on expensive sampling, e.g., Gumbel Softmax-based differentiable optimization and Bayesian optimization. We propose an analytical model for evaluating power and performance of CNN hardware design and dataflow solutions. Based on this model, we introduce a co-optimization method consisting of nonlinear programming and parallel local search. A key innovation in this model is its matrix form, which enables the use of deep learning toolkit for highly efficient computations of power/performance values and gradients in the optimization. In handling power-performance tradeoff, our method can lead to better solutions than minimizing a weighted sum of power and latency. The average relative error of our model compared with Timeloop is as small as 1%. Compared to state-of-the-art methods, our approach achieves solutions with up to 1.7 × shorter inference latency, 37.5% less power consumption, and 3 × less area on ResNet 18. Moreover, it provides a 6.2 × speedup of optimization runtime.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"58 2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127237960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信