Obstacle-Avoiding Multiple Redistribution Layer Routing with Irregular Structures*

Yen-Ting Chen, Yao-Wen Chang
{"title":"Obstacle-Avoiding Multiple Redistribution Layer Routing with Irregular Structures*","authors":"Yen-Ting Chen, Yao-Wen Chang","doi":"10.1145/3508352.3549419","DOIUrl":null,"url":null,"abstract":"In advanced packages, redistribution layers (RDLs) are extra metal layers for high interconnections among the chips and printed circuit board (PCB). To better utilize the routing resources of RDLs, published works adopted flexible vias such that they can place the vias everywhere. Furthermore, some regions may be blocked for signal integrity protection or manually prerouted nets (such as power/ground nets or feeding lines of antennas) to achieve higher performance. These blocked regions will be treated as obstacles in the routing process. Since the positions of pads, obstacles, and vias can be arbitrary, the structures of RDLs become irregular. The obstacles and irregular structures substantially increase the difficulty of the routing process. This paper proposes a three-stage algorithm: First, the layout is partitioned by a method based on constrained Delaunay triangulation (CDT). Then we present a global routing graph model and generate routing guides for unified-assignment netlists. Finally, a novel tile routing method is developed to obtain detailed routes. Experiment results demonstrate the robustness and effectiveness of our proposed algorithm.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In advanced packages, redistribution layers (RDLs) are extra metal layers for high interconnections among the chips and printed circuit board (PCB). To better utilize the routing resources of RDLs, published works adopted flexible vias such that they can place the vias everywhere. Furthermore, some regions may be blocked for signal integrity protection or manually prerouted nets (such as power/ground nets or feeding lines of antennas) to achieve higher performance. These blocked regions will be treated as obstacles in the routing process. Since the positions of pads, obstacles, and vias can be arbitrary, the structures of RDLs become irregular. The obstacles and irregular structures substantially increase the difficulty of the routing process. This paper proposes a three-stage algorithm: First, the layout is partitioned by a method based on constrained Delaunay triangulation (CDT). Then we present a global routing graph model and generate routing guides for unified-assignment netlists. Finally, a novel tile routing method is developed to obtain detailed routes. Experiment results demonstrate the robustness and effectiveness of our proposed algorithm.
不规则结构的多重分布层避障路由*
在高级封装中,再分配层(rdl)是用于芯片和印刷电路板(PCB)之间高互连的额外金属层。为了更好地利用rdl的路由资源,已发表的作品采用了灵活的过孔,可以将过孔放置在任何地方。此外,为了信号完整性保护或手动预路由网(如电源/接地网或天线馈线),某些区域可能会被阻塞,以实现更高的性能。这些被阻塞的区域将被视为路由过程中的障碍。由于护垫、障碍物和过孔的位置可以是任意的,因此rdl的结构变得不规则。障碍物和不规则结构大大增加了布线过程的难度。本文提出了一种基于约束Delaunay三角剖分(CDT)的布局分割算法。然后给出了全局路由图模型,并生成了统一分配网络的路由指南。最后,提出了一种新的瓦片路由方法来获取详细的瓦片路由。实验结果证明了该算法的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信