{"title":"基于嵌入神经元的内存结构中近似图像滤波的可调精度控制","authors":"Ayushi Dube, Ankit Wagle, G. Singh, S. Vrudhula","doi":"10.1145/3508352.3549385","DOIUrl":null,"url":null,"abstract":"This paper presents a novel hardware-software co-design consisting of a Processing in-Memory (PiM) architecture with embedded neural processing elements (NPE) that are highly reconfigurable. The PiM platform and proposed approximation strategies are employed for various image filtering applications while providing the user with fine-grain dynamic control over energy efficiency, precision, and throughput (EPT). The proposed co-design can change the Peak Signal to Noise Ratio (PSNR, output quality metric for image filtering applications) from 25dB to 50dB (acceptable PSNR range for image filtering applications) without incurring any extra cost in terms of energy or latency. While switching from accurate to approximate mode of computation in the proposed co-design, the maximum improvement in energy efficiency and throughput is 2X. However, the gains in energy efficiency against a MAC-based PE array with the proposed memory platform are 3X-6X. The corresponding improvements in throughput are 2.26X-4.52X, respectively.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable Precision Control for Approximate Image Filtering in an In-Memory Architecture with Embedded Neurons\",\"authors\":\"Ayushi Dube, Ankit Wagle, G. Singh, S. Vrudhula\",\"doi\":\"10.1145/3508352.3549385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel hardware-software co-design consisting of a Processing in-Memory (PiM) architecture with embedded neural processing elements (NPE) that are highly reconfigurable. The PiM platform and proposed approximation strategies are employed for various image filtering applications while providing the user with fine-grain dynamic control over energy efficiency, precision, and throughput (EPT). The proposed co-design can change the Peak Signal to Noise Ratio (PSNR, output quality metric for image filtering applications) from 25dB to 50dB (acceptable PSNR range for image filtering applications) without incurring any extra cost in terms of energy or latency. While switching from accurate to approximate mode of computation in the proposed co-design, the maximum improvement in energy efficiency and throughput is 2X. However, the gains in energy efficiency against a MAC-based PE array with the proposed memory platform are 3X-6X. The corresponding improvements in throughput are 2.26X-4.52X, respectively.\",\"PeriodicalId\":270592,\"journal\":{\"name\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3508352.3549385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tunable Precision Control for Approximate Image Filtering in an In-Memory Architecture with Embedded Neurons
This paper presents a novel hardware-software co-design consisting of a Processing in-Memory (PiM) architecture with embedded neural processing elements (NPE) that are highly reconfigurable. The PiM platform and proposed approximation strategies are employed for various image filtering applications while providing the user with fine-grain dynamic control over energy efficiency, precision, and throughput (EPT). The proposed co-design can change the Peak Signal to Noise Ratio (PSNR, output quality metric for image filtering applications) from 25dB to 50dB (acceptable PSNR range for image filtering applications) without incurring any extra cost in terms of energy or latency. While switching from accurate to approximate mode of computation in the proposed co-design, the maximum improvement in energy efficiency and throughput is 2X. However, the gains in energy efficiency against a MAC-based PE array with the proposed memory platform are 3X-6X. The corresponding improvements in throughput are 2.26X-4.52X, respectively.