{"title":"不规则结构的多重分布层避障路由*","authors":"Yen-Ting Chen, Yao-Wen Chang","doi":"10.1145/3508352.3549419","DOIUrl":null,"url":null,"abstract":"In advanced packages, redistribution layers (RDLs) are extra metal layers for high interconnections among the chips and printed circuit board (PCB). To better utilize the routing resources of RDLs, published works adopted flexible vias such that they can place the vias everywhere. Furthermore, some regions may be blocked for signal integrity protection or manually prerouted nets (such as power/ground nets or feeding lines of antennas) to achieve higher performance. These blocked regions will be treated as obstacles in the routing process. Since the positions of pads, obstacles, and vias can be arbitrary, the structures of RDLs become irregular. The obstacles and irregular structures substantially increase the difficulty of the routing process. This paper proposes a three-stage algorithm: First, the layout is partitioned by a method based on constrained Delaunay triangulation (CDT). Then we present a global routing graph model and generate routing guides for unified-assignment netlists. Finally, a novel tile routing method is developed to obtain detailed routes. Experiment results demonstrate the robustness and effectiveness of our proposed algorithm.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Obstacle-Avoiding Multiple Redistribution Layer Routing with Irregular Structures*\",\"authors\":\"Yen-Ting Chen, Yao-Wen Chang\",\"doi\":\"10.1145/3508352.3549419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In advanced packages, redistribution layers (RDLs) are extra metal layers for high interconnections among the chips and printed circuit board (PCB). To better utilize the routing resources of RDLs, published works adopted flexible vias such that they can place the vias everywhere. Furthermore, some regions may be blocked for signal integrity protection or manually prerouted nets (such as power/ground nets or feeding lines of antennas) to achieve higher performance. These blocked regions will be treated as obstacles in the routing process. Since the positions of pads, obstacles, and vias can be arbitrary, the structures of RDLs become irregular. The obstacles and irregular structures substantially increase the difficulty of the routing process. This paper proposes a three-stage algorithm: First, the layout is partitioned by a method based on constrained Delaunay triangulation (CDT). Then we present a global routing graph model and generate routing guides for unified-assignment netlists. Finally, a novel tile routing method is developed to obtain detailed routes. Experiment results demonstrate the robustness and effectiveness of our proposed algorithm.\",\"PeriodicalId\":270592,\"journal\":{\"name\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3508352.3549419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Obstacle-Avoiding Multiple Redistribution Layer Routing with Irregular Structures*
In advanced packages, redistribution layers (RDLs) are extra metal layers for high interconnections among the chips and printed circuit board (PCB). To better utilize the routing resources of RDLs, published works adopted flexible vias such that they can place the vias everywhere. Furthermore, some regions may be blocked for signal integrity protection or manually prerouted nets (such as power/ground nets or feeding lines of antennas) to achieve higher performance. These blocked regions will be treated as obstacles in the routing process. Since the positions of pads, obstacles, and vias can be arbitrary, the structures of RDLs become irregular. The obstacles and irregular structures substantially increase the difficulty of the routing process. This paper proposes a three-stage algorithm: First, the layout is partitioned by a method based on constrained Delaunay triangulation (CDT). Then we present a global routing graph model and generate routing guides for unified-assignment netlists. Finally, a novel tile routing method is developed to obtain detailed routes. Experiment results demonstrate the robustness and effectiveness of our proposed algorithm.