{"title":"Integration of an adaptive infotainment system in a vehicle and validation in real driving scenarios","authors":"Miguel Angel Galarza, Teresa Bayona, J. Paradells","doi":"10.1155/2017/4531780","DOIUrl":"https://doi.org/10.1155/2017/4531780","url":null,"abstract":"More services, functionalities, and interfaces are increasingly being incorporated into current vehicles and may overload the driver capacity to perform primary driving tasks adequately. For this reason, a strategy for easing driver interaction with the infotainment system must be defined, and a good balance between road safety and driver experience must also be achieved. An adaptive Human Machine Interface (HMI) that manages the presentation of information and restricts drivers’ interaction in accordance with the driving complexity was designed and evaluated. For this purpose, the driving complexity value employed as a reference was computed by a predictive model, and the adaptive interface was designed following a set of proposed HMI principles. The system was validated performing acceptance and usability tests in real driving scenarios. Results showed the system performs well in real driving scenarios. Also, positive feedbacks were received from participants endorsing the benefits of integrating this kind of system as regards driving experience and road safety.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132018186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Driver Behavior Modeling: Developments and Future Directions","authors":"N. Abuali, H. Abou-zeid","doi":"10.1155/2016/6952791","DOIUrl":"https://doi.org/10.1155/2016/6952791","url":null,"abstract":"The advances in wireless communication schemes, mobile cloud and fog computing, and context-aware services boost a growing interest in the design, development, and deployment of driver behavior models for emerging applications. Despite the progressive advancements in various aspects of driver behavior modeling (DBM), only limited work can be found that reviews the growing body of literature, which only targets a subset of DBM processes. Thus a more general review of the diverse aspects of DBM, with an emphasis on the most recent developments, is needed. In this paper, we provide an overview of advances of in-vehicle and smartphone sensing capabilities and communication and recent applications and services of DBM and emphasize research challenges and key future directions.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"47 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"113985806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental Test of Artificial Potential Field-Based Automobiles Automated Perpendicular Parking","authors":"Yiqun Dong, You-peng Zhang, J. Ai","doi":"10.1155/2016/2306818","DOIUrl":"https://doi.org/10.1155/2016/2306818","url":null,"abstract":"Automobiles automated perpendicular parking using Artificial Potential Field (APF) is discussed in this paper. The Unmanned Ground Vehicle (UGV) used for carrying out experiments is introduced first; UGV configuration, kinematics, and motion controller are included. Based on discretized form of the parking space, the APF is generated. Holonomic path for the vehicle parking is found first; path modification to satisfy minimum turning-radius constraint is performed based on Reeds-Shepp curve connections. Optimization efforts are included to remove extra maneuvers and to reduce length of the path. Afterwards waypoints are generated as reference for the vehicle to track. Perpendicular parking tests with several different start configurations are demonstrated; based on the test results the automated parking framework proposed in this paper is considered to be effective.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129433302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical Simulation Analysis of an Oversteer In-Wheel Small Electric Vehicle Integrated with Four-Wheel Drive and Independent Steering","authors":"M. I. Ishak, Hirohiko Ogino, Y. Yamamoto","doi":"10.1155/2016/7235471","DOIUrl":"https://doi.org/10.1155/2016/7235471","url":null,"abstract":"Similar to conventional vehicle, most in-wheel small EVs that exist today are designed with understeer (US) characteristic. They are safer on the road but possess poor cornering performance. With recent in-wheel motor and steer-by wire technology, high cornering performance vehicle does not limit to sport or racing cars. We believe that oversteer (OS) design approach for in-wheel small EV can increase the steering performance of the vehicle. However, one disadvantage is that OS vehicle has a stability limit velocity. In this paper, we proposed a Four-Wheel Drive and Independent Steering (4WDIS) for in-wheel small EV with OS characteristic. The aim of implementing 4WDIS is to develop a high steer controllability and stability of the EV at any velocity. This paper analyses the performance of OS in-wheel small EV with 4WDIS by using numerical simulation. Two cornering conditions were simulated which are (1) steady-state cornering at below critical velocity and (2) steady-state cornering over critical velocity. The objective of the simulation is to understand the behavior of OS in-wheel small EV and the advantages of implementing the 4WDIS. The results show that an in-wheel small EV can achieve high cornering performance at low speed while maintaining stability at high speed.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"84 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128363533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. R. Aparow, K. Hudha, Z. A. Kadir, Megat M. H. M. Ahmad, S. Abdullah
{"title":"Modeling, Validation, and Control of Electronically Actuated Pitman Arm Steering for Armored Vehicle","authors":"V. R. Aparow, K. Hudha, Z. A. Kadir, Megat M. H. M. Ahmad, S. Abdullah","doi":"10.1155/2016/2175204","DOIUrl":"https://doi.org/10.1155/2016/2175204","url":null,"abstract":"In this study, 2 DOF mathematical models of Pitman arm steering system are derived using Newton’s law of motion and modeled in MATLAB/SIMULINK software. The developed steering model is included with a DC motor model which is directly attached to the steering column. The Pitman arm steering model is then validated with actual Pitman arm steering test rig using various lateral inputs such as double lane change, step steer, and slalom test. Meanwhile, a position tracking control method has been used in order to evaluate the effectiveness of the validated model to be implemented in active safety system of a heavy vehicle. The similar method has been used to test the actual Pitman arm steering mechanism using hardware-in-the-loop simulation (HILS) technique. Additional friction compensation is added in the HILS technique in order to minimize the frictional effects that occur in the mechanical configuration of the DC motor and Pitman arm steering. The performance of the electronically actuated Pitman arm steering system can be used to develop a firing-on-the-move actuator (FOMA) for an armored vehicle. The FOMA can be used as an active safety system to reject unwanted yaw motion due to the firing force.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"358 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133904149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Energy Management Strategy Implementation for Hybrid Electric Vehicles Using Genetic Algorithm Tuned Pontryagin’s Minimum Principle Controller","authors":"A. Panday, H. Bansal","doi":"10.1155/2016/4234261","DOIUrl":"https://doi.org/10.1155/2016/4234261","url":null,"abstract":"To reduce apace extraction of natural resources, to plummet the toxic emissions, and to increase the fuel economy for road transportation, hybrid vehicles are found to be promising. Hybrid vehicles use batteries and engine to propel the vehicle which minimizes dependence on liquid fuels. Battery is an important component of hybrid vehicles and is mainly characterized by its state of charge level. Here a modified state of charge estimation algorithm is applied, which includes not only coulomb counting but also open circuit voltage, weighting factor, and correction factor to track the run time state of charge efficiently. Further, presence of battery and engine together needs a prevailing power split scheme for their efficient utilization. In this paper, a fuel efficient energy management strategy for power-split hybrid electric vehicle using modified state of charge estimation method is developed. Here, the optimal values of various governing parameters are firstly computed with genetic algorithm and then fed to Pontryagin’s minimum principle to decide the threshold power at which engine is turned on. This process makes the proposed method robust and provides better chance to improve the fuel efficiency. Engine efficient operating region is identified to operate vehicle in efficient regions and reduce fuel consumption.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"67 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122573755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of Genetic Algorithms for Driverless Subway Train Energy Optimization","authors":"M. Brenna, F. Foiadelli, M. Longo","doi":"10.1155/2016/8073523","DOIUrl":"https://doi.org/10.1155/2016/8073523","url":null,"abstract":"After an introduction on the basic aspects of electric railway transports, focusing mainly on driverless subways and their related automation systems (ATC, ATP, and ATO), a technique for energy optimization of the train movement through their control using genetic algorithms will be presented. Genetic algorithms are a heuristic search and iterative stochastic method used in computing to find exact or approximate solutions to optimization problems. This optimization process has been calculated and tested on a real subway line in Milan through the implementation of a dedicated Matlab code. The so-defined algorithm provides the optimization of the trains movement through a coast control table created by the use of a genetic algorithm that minimizes the energy consumption and the train scheduled time. The obtained results suggest that the method is promising in minimizing the energy consumption of the electric trains.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"571 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125860640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Increasing the Cruise Range and Reducing the Capital Cost of Electric Vehicles by Integrating Auxiliary Unit with the Traction Drive","authors":"N. Satheesh Kumar","doi":"10.1155/2016/7617692","DOIUrl":"https://doi.org/10.1155/2016/7617692","url":null,"abstract":"Poor cruise performance of Electric Vehicles (EVs) continues to be the primary reason that impends their market penetration. Adding more battery to extend the cruise range is not a viable solution as it increases the structural weight and capital cost of the EV. Simulations identified that a vehicle spends on average 15% of its total time in braking, signifying an immense potential of the utilization of regenerative braking mechanism. Based on the analysis, a 3 kW auxiliary electrical unit coupled with the traction drive during braking events increases the recoverable energy by 8.4%. In addition, the simulation revealed that, on average, the energy drawn from the battery is reduced by 3.2% when traction drive is integrated with the air-conditioning compressor (an auxiliary electrical load). A practical design solution of the integrated unit is also included in the paper. Based on the findings, it is evident that the integration of an auxiliary unit with the traction drive results in enhancing the energy capturing capacity of the regenerative braking mechanism and decreases the power consumed from the battery. Further, the integrated unit boosts other advantages such as reduced material cost, improved reliability, and a compact and lightweight design.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"126 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122786630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simple Simulated Propagation Modeling and Experimentation within and around Buildings at 2700 MHz","authors":"Tanay Bhatt, J. Bredow","doi":"10.1155/2016/9846374","DOIUrl":"https://doi.org/10.1155/2016/9846374","url":null,"abstract":"There is a growing interest in understanding wave behavior in urban and suburban environment for 5th generation broadband applications. With the advent of using broadband technologies in buildings, office space and vehicle have become a necessity on a large scale. Models, predictions, and calculations for in-building, within a vehicle or near a reflective object with microscale details, are becoming highly classified in a competitive telecom environment. This paper provides an improved understanding of signal strength behavior within suburban residences with predictions prequalified using a vehicular scanner. Supporting predictions are provided by a ray tracing algorithm developed for dissertation. Results indicate signal strength variation of more than 50 dB from “strong signal” locations such as room centers and far corners to “weak signal” locations where shadowing and tunneling effects are evident. Based on this unique classification a scheme is proposed which indicates that specular scattering provides the major signal energy at more than 70% of the locations within the residences. Finally, an observed rake stabilizing effect is attributed to the proximity of strong scatterers.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116749563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Modified Hybrid III 6-Year-Old Dummy Head Model for Lateral Impact Assessment","authors":"I. A. Rafukka, B. Sahari, A. Nuraini, A. Manohar","doi":"10.1155/2016/1768512","DOIUrl":"https://doi.org/10.1155/2016/1768512","url":null,"abstract":"Hybrid III six-year-old (6YO) child dummy head model was developed and validated for frontal impact assessment according to the specifications contained in Code of Federal Regulations, Title 49, Part 572.122, Subpart N by Livermore Software Technology Corporation (LSTC). This work is aimed at improving biofidelity of the head for frontal impact and also extending its application to lateral impact assessment by modifying the head skin viscoelastic properties and validating the head response using the scaled nine-year-old (9YO) child cadaver head response recently published in the literature. The modified head model was validated for two drop heights for frontal, right, and left parietal impact locations. Peak resultant acceleration of the modified head model appeared to have good correlation with scaled 9YO child cadaver head response for frontal impact on dropping from 302 mm height and fair correlation with 12.3% difference for 151 mm drop height. Right parietal peak resultant acceleration values correlate well with scaled 9YO head experimental data for 153 mm drop height, while fair correlation with 16.4% difference was noticed for 302 mm drop height. Left parietal, however, shows low biofidelity for the two drop heights as the difference in head acceleration response was within 30%. The modified head model could therefore be used to estimate injuries in vehicle crash for head parietal impact locations which cannot be measured by the current hybrid III dummy head model.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"139 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125640780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}