Christian Pinedo, M. Aguado, Igor Lopez, J. Astorga
{"title":"Modelling and Simulation of ERTMS for Current and Future Mobile Technologies","authors":"Christian Pinedo, M. Aguado, Igor Lopez, J. Astorga","doi":"10.1155/2015/912417","DOIUrl":"https://doi.org/10.1155/2015/912417","url":null,"abstract":"Nowadays, train control in-lab simulation tools play a crucial role in reducing extensive and expensive on-site railway testing activities. In this paper, we present our contribution in this arena by detailing the internals of our European Railway Train Management System in-lab demonstrator. This demonstrator is built over a general-purpose simulation framework, Riverbed Modeler, previously Opnet Modeler. Our framework models both ERTMS subsystems, the Automatic Train Protection application layer based on movement authority message exchange and the telecommunication subsystem based on GSM-R communication technology. We provide detailed information on our modelling strategy. We also validate our simulation framework with real trace data. To conclude, under current industry migration scenario from GSM-R legacy obsolescence to IP-based heterogeneous technologies, our simulation framework represents a singular tool to railway operators. As an example, we present the assessment of related performance indicators for a specific railway network using a candidate replacement technology, LTE, versus current legacy technology. To the best of our knowledge, there is no similar initiative able to measure the impact of the telecommunication subsystem in the railway network availability.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"73 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125519124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rate Request Sequenced Bit Loading Secondary User Reallocation Algorithm for DMT Systems in Cognitive Radio","authors":"S. Prema, D. S. Rani","doi":"10.1155/2015/685491","DOIUrl":"https://doi.org/10.1155/2015/685491","url":null,"abstract":"A rate request sequenced bit loading reallocation algorithm is proposed. The spectral holes detected by spectrum sensing (SS) in cognitive radio (CR) are used by secondary users. This algorithm is applicable to Discrete Multitone (DMT) systems for secondary user reallocation. DMT systems support different modulation on different subchannels according to Signal-to-Noise Ratio (SNR). The maximum bits and power that can be allocated to each subband is determined depending on the channel state information (CSI) and secondary user modulation scheme. The spectral holes or free subbands are allocated to secondary users depending on the user rate request and subchannel capacity. A comparison is done between random rate request and sequenced rate request of secondary user for subchannel allocation. Through simulations it is observed that with sequenced rate request higher spectral efficiency is achieved with reduced complexity.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127828891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Power Flows and Efficiency of Output Compound e-CVT","authors":"F. Bottiglione, G. Mantriota","doi":"10.1155/2015/136437","DOIUrl":"https://doi.org/10.1155/2015/136437","url":null,"abstract":"Hybridization is the most promising vehicular technology to get significant improvements of the vehicle efficiency and performance in the short-term. Mechanical transmissions for hybrid vehicles are very often multiple modes transmission, which permit improving the performance in different working conditions. In this context, optimal design and control of these transmissions are a key point to improve the performance of the vehicles, and mathematical models which supports the design can play an important role in this field. In this work, an approach for evaluating the performance of Output Compound Split e-CVT (electric Continuously Variable Transmission) in steady-state is proposed. This approach, in addition to a kinematic analysis of the device, leads to the calculation of the internal power circulation modes and the efficiency of the device in different working conditions.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115142171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New method of car body panel external straightening: tools of method","authors":"A. Gnatov, Schasyana Argun","doi":"10.1155/2015/192958","DOIUrl":"https://doi.org/10.1155/2015/192958","url":null,"abstract":"Recently repair and recovery vehicle body operations become more and more popular. A special place here is taken by equipment that provides performance of given repair operations. The most interesting things are methods for recovery of car body panels that allow the straightening without disassembling of car body panels and damaging of existing protective coating. Now, there are several technologies for repair and recovery of car body panels without their disassembly and dismantling. The most perspective is magnetic-pulse technology of external noncontact straightening. Basics of magnetic-pulse attraction, both ferromagnetic and nonferromagnetic thin-walled sheet metal, are explored. Inductor system calculation models of magnetic-pulse straightening tools are presented. Final analytical expressions for excited efforts calculation in the tools under consideration are introduced. According to the obtained analytical expressions, numerical evaluations of excited forces were executed. The volumetric epures of the attractive force radial distributions for different types of inductors were built. The practical testing of magnetic-pulse straightening with research tools is given. Using the results of the calculations we can create effective tools for an external magnetic-pulse straightening of car body panels.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"192 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123391822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of Estimation Force Feedback Torque Control Algorithm for Driver Steering Feel in Vehicle Steer by Wire System: Hardware in the Loop","authors":"S. Fahami, H. Zamzuri, S. Mazlan","doi":"10.1155/2015/314597","DOIUrl":"https://doi.org/10.1155/2015/314597","url":null,"abstract":"In conventional steering system, a feedback torque is produced from the contact between tire and road surface and its flows through mechanical column shaft directly to driver. This allows the driver to sense the steering feel during driving. However, in steer by wire (SBW) system, the elimination of the mechanical column shaft requires the system to generate the feedback torque which should produce similar performance with conventional steering system. Therefore, this paper proposes a control algorithm to create the force feedback torque for SBW system. The direct current measurement approach is used to estimate torque at the steering wheel and front axle motor as elements to the feedback torque, while, adding the compensation torque for a realistic feedback torque. The gain scheduling with a linear quadratic regulator controller is used to control the feedback torque and to vary a steering feel gain. To investigate the effectiveness of the proposed algorithm, a real-time hardware in the loop (HIL) methodology is developed using Matlab XPC target toolbox. The results show that the proposed algorithm is able to generate the feedback torque similar to EPS steering system. Furthermore, the compensation torque is able to improve the steering feel and stabilize the system.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115276424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Channel Impulse Response Estimation in IEEE 802.11p via Data Fusion and MMSE Estimator","authors":"Giulio Ministeri, L. Vangelista","doi":"10.1155/2015/670482","DOIUrl":"https://doi.org/10.1155/2015/670482","url":null,"abstract":"Tracking the channel impulse response in systems based on the IEEE 802.11p standard, the most widely accepted standard for the physical layer in vehicular area networks (VANETs), is still an open research topic. In this paper we aim to improve previously proposed channel estimators by utilizing data aided algorithm that includes the channel decoding to enhance the quality of the estimated data. Moreover we propose a novel technique that exploits information provided by external sensors like GPS or speedometer, usually present in vehicles. The algorithm proposed so far has been analyzed in non-line-of-sight link conditions; in this paper we present an analysis of performances in the line-of-sight condition as well. Simulations show that both proposals give considerable improvements in terms of packet error rate and channel estimation error in the highway scenario which is surely the most stressing environment for the channel response tracker.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133294921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Link Reliability Based Greedy Perimeter Stateless Routing for Vehicular Ad Hoc Networks","authors":"Siddharth Shelly, A. Babu","doi":"10.1155/2015/921414","DOIUrl":"https://doi.org/10.1155/2015/921414","url":null,"abstract":"We propose an enhancement for the well-known greedy perimeter stateless routing (GPSR) protocol for vehicular ad hoc networks (VANETs), which exploits information about link reliability when one-hop vehicles are chosen for forwarding a data packet. In the proposed modified routing scheme, a tagged vehicle will select its one-hop forwarding vehicle based on reliability of the corresponding communication link. We define link reliability as the probability that a direct link among a pair of neighbour vehicles will remain alive for a finite time interval. We present a model for computing link reliability and use this model for the design of reliability based GPSR. The proposed protocol ensures that links with reliability factor greater than a given threshold alone are selected, when constructing a route from source to destination. The modified routing scheme shows significant improvement over the conventional GPSR protocol in terms of packet delivery ratio and throughput. We provide simulation results to justify the claim.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122048178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design of Commute Carpooling Based on Fixed Time and Routes","authors":"Guiliang Zhou, Kai Huang, Lina Mao","doi":"10.1155/2014/634926","DOIUrl":"https://doi.org/10.1155/2014/634926","url":null,"abstract":"Although the private carpooling market of China has grown rapidly, it has been embarrassed by problems such as obstructed information, disordered expense, and frequent crimes currently. In this paper, a commute carpooling program based on fixed time and routes is designed and corresponding carpooling information platform is built to realize information retrieval, information matching, and mutual selection and evaluation. We have practiced the program in Huaian, China, and then evaluated it using the improved time-expense impedance model and VISSIM simulation system. The result shows that the carpooling program can reduce 65%~86% of the time-expense impedance and optimize some network parameters up to 20%~40%. Since it will help in reducing the travel time and cost greatly, improving safety and economy during carpooling, and easing the traffic congestion, it is a worthy carpooling mode to be extended in China.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121262370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Traction Control of Electric Vehicles Using Sliding-Mode Controller with Tractive Force Observer","authors":"S. Kuntanapreeda","doi":"10.1155/2014/829097","DOIUrl":"https://doi.org/10.1155/2014/829097","url":null,"abstract":"Traction control is an important element in modern vehicles to enhance drive efficiency, safety, and stability. Traction is produced by friction between tire and road, which is a nonlinear function of wheel slip. In this paper, a sliding-mode control approach is used to design a robust traction controller. The control objective is to operate vehicles such that a desired wheel slip ratio is achieved. A nonlinearity observer is employed to estimate tire tractive forces, which are used in the control law. Simulation and experimental results have illustrated the success of the proposed observer-based controller.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130161030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Review of Optimal Energy Management Strategies for Hybrid Electric Vehicle","authors":"A. Panday, H. Bansal","doi":"10.1155/2014/160510","DOIUrl":"https://doi.org/10.1155/2014/160510","url":null,"abstract":"Presence of an alternative energy source along with the Internal Combustion Engine (ICE) in Hybrid Electric Vehicles (HEVs) appeals for optimal power split between them for minimum fuel consumption and maximum power utilization. Hence HEVs provide better fuel economy compared to ICE based vehicles/conventional vehicle. Energy management strategies are the algorithms that decide the power split between engine and motor in order to improve the fuel economy and optimize the performance of HEVs. This paper describes various energy management strategies available in the literature. A lot of research work has been conducted for energy optimization and the same is extended for Plug-in Hybrid Electric Vehicles (PHEVs). This paper concentrates on the battery powered hybrid vehicles. Numerous methods are introduced in the literature and based on these, several control strategies are proposed. These control strategies are summarized here in a coherent framework. This paper will serve as a ready reference for the researchers working in the area of energy optimization of hybrid vehicles.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134236412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}